Skip to main content

Epigenetic Regulation by Noncoding RNAs in Plant Development

  • Chapter
  • First Online:
Book cover Plant Epigenetics

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Epigenetic regulatory networks are orchestrated by various molecules, including transcription factors, mRNAs, noncoding RNAs (ncRNAs), DNA modifications, histone modifications, alterations in higher order chromatin structure, and some other signals. Noncoding RNAs constitute a substantial portion of transcribed sequences and play important roles in a wide range of biological processes in mammals and plants. ncRNAs have been further divided into small ncRNAs (sncRNAs, <200 nt), such as microRNAs (miRNAs), and long ncRNAs (lncRNAs, >200 nt). In this chapter, we focus on the epigenetic regulatory mechanisms involving ncRNAs, specifically the role of miRNAs, lncRNAs, and their regulatory networks in plant development. We also discuss future challenges of using ncRNAs in agricultural applications, including transgenic plants in crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banfai B, Jia H, Khatun J et al (2012) Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 22:1646–1657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Amor B, Wirth S, Merchan F et al (2009) Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19:57–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A et al (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832

    Article  CAS  PubMed  Google Scholar 

  • Bian H, Xie Y, Guo F et al (2012) Distinctive expression patterns and roles of the miRNA393/TIR1 homolog module in regulating flag leaf inclination and primary and crown root growth in rice (Oryza sativa). New Phytol 196:149–161

    Article  CAS  PubMed  Google Scholar 

  • Boerner S, Mcginnis KM (2012) Computational identification and functional predictions of long noncoding RNA in Zea mays. PLoS One 7:e43047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503

    Article  CAS  PubMed  Google Scholar 

  • Borges F, Martienssen RA (2015) The expanding world of small RNAs in plants. Nat Rev Mol Cell Biol 16:727–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borsani O, Zhu J, Verslues PE et al (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burleigh SH, Harrison MJ (1999) The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol 119:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrne ME (2005) Networks in leaf development. Curr Opin Plant Biol 8:59–66

    Article  PubMed  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005a) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Weijers D et al (2005b) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119

    Article  CAS  PubMed  Google Scholar 

  • Ding J, Lu Q, Ouyang Y et al (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109:2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Zorrilla JM, Valli A, Todesco M et al (2007) Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet 39:1033–1037

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez L, Bussell JD, Pacurar DI et al (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez L, Mongelard G, Flokova K et al (2012) Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24:2515–2527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helliwell CA, Robertson M, Finnegan EJ et al (2011) Vernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcripts. PLoS One 6:e21513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendelman A, Stav R, Zemach H et al (2013) The tomato NAC transcription factor SlNAM2 is involved in flower-boundary morphogenesis. J Exp Bot 64:5497–5507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  • Hibara K, Takada S, Tasaka M (2003) CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J 36:687–696

    Article  CAS  PubMed  Google Scholar 

  • Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110

    Article  CAS  PubMed  Google Scholar 

  • Kamiuchi Y, Yamamoto K, Furutani M et al (2014) The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development. Front Plant Sci 5:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Katiyar-Agarwal S, Gao S, Vivian-Smith A et al (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim ED, Sung S (2012) Long noncoding RNA: unveiling hidden layer of gene regulatory networks. Trends Plant Sci 17:16–21

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Choi D, Kende H (2003) The AtGRF family of putative transcription factors is involved in leaf and cotyledon growth in Arabidopsis. Plant J 36:94–104

    Article  CAS  PubMed  Google Scholar 

  • Laufs P, Peaucelle A, Morin H et al (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhang B (2016) MicroRNAs in control of plant development. J Cell Physiol 231:303–313

    Article  CAS  PubMed  Google Scholar 

  • Lian H, Li X, Liu Z et al (2013) HYL1 is required for establishment of stamen architecture with four microsporangia in Arabidopsis. J Exp Bot 64:3397–3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Muchhal US, Raghothama KG (1997) Differential expression of TPS11, a phosphate starvation-induced gene in tomato. Plant Mol Biol 33:867–874

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Song Y, Chen Z et al (2009) Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiol Plant 136:223–236

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Jia SH, Shen DF et al (2012a) Four AUXIN RESPONSE FACTOR genes downregulated by microRNA167 are associated with growth and development in Oryza sativa. Funct Plant Biol 39:736–744

    Article  CAS  Google Scholar 

  • Liu J, Jung C, Xu J et al (2012b) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Guo S, Xu Y et al (2014a) OsmiR396d-regulated OsGRFs function in floral organogenesis in rice through binding to their targets OsJMJ706 and OsCR4. Plant Physiol 165:160–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu N, Wu S, Van Houten J et al (2014b) Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J Exp Bot 65:2507–2520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Yan B, Qu Y et al (2008) Zm401, a short-open reading-frame mRNA or noncoding RNA, is essential for tapetum and microspore development and can regulate the floret formation in maize. J Cell Biochem 105:136–146

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin AC, Del Pozo JC, Iglesias J et al (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24:559–567

    Article  CAS  PubMed  Google Scholar 

  • Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15:394–408

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Ma X, Chen D et al (2010) MicroRNA-mediated signaling involved in plant root development. Biochem Biophys Res Commun 393:345–349

    Article  CAS  PubMed  Google Scholar 

  • Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  CAS  PubMed  Google Scholar 

  • Nikovics K, Blein T, Peaucelle A et al (2006) The balance between the MIR164A and CUC2 genes controls leaf margin serration in Arabidopsis. Plant Cell 18:2929–2945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ori N, Cohen AR, Etzioni A et al (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791

    Article  CAS  PubMed  Google Scholar 

  • Palatnik JF, Allen E, Wu X et al (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263

    Article  CAS  PubMed  Google Scholar 

  • Parry G, Calderon-Villalobos LI, Prigge M et al (2009) Complex regulation of the TIR1/AFB family of auxin receptors. Proc Natl Acad Sci USA 106:22540–22545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pikaard CS, Mittelsten SO (2014) Epigenetic regulation in plants. Cold Spring Harb Perspect Biol 6:a019315

    Article  PubMed  PubMed Central  Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez RE, Mecchia MA, Debernardi JM et al (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers ED, Benfey PN (2015) Regulation of plant root system architecture: implications for crop advancement. Curr Opin Biotechnol 32:93–98

    Article  CAS  PubMed  Google Scholar 

  • Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogg LE, Lasswell J, Bartel B (2001) A gain-of-function mutation in IAA28 suppresses lateral root development. Plant Cell 13:465–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron M, Alandete Saez M, Eshed Williams L et al (2010) Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev 24:1010–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ru P, Xu L, Ma H et al (2006) Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 16:457–465

    Article  CAS  PubMed  Google Scholar 

  • Salehin M, Bagchi R, Estelle M (2015) SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schommer C, Palatnik JF, Aggarwal P et al (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:e230

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Zhang Z, Lin H et al (2011) Cytoplasmic male sterility-regulated novel microRNAs from maize. Funct Integr Genomics 11:179–191

    Article  CAS  PubMed  Google Scholar 

  • Shin H, Shin HS, Chen R et al (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45:712–726

    Article  CAS  PubMed  Google Scholar 

  • Shuai P, Liang D, Tang S et al (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  CAS  PubMed  Google Scholar 

  • Song JH, Cao JS, Yu XL et al (2007) BcMF11, a putative pollen-specific non-coding RNA from Brassica campestris ssp. chinensis. J Plant Physiol 164:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Song JH, Cao JS, Wang CG (2013) BcMF11, a novel non-coding RNA gene from Brassica campestris, is required for pollen development and male fertility. Plant Cell Rep 32:21–30

    Article  CAS  PubMed  Google Scholar 

  • Sun G (2012) MicroRNAs and their diverse functions in plants. Plant Mol Biol 80:17–36

    Article  CAS  PubMed  Google Scholar 

  • Swiezewski S, Liu F, Magusin A et al (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802

    Article  CAS  PubMed  Google Scholar 

  • Tabata R, Ikezaki M, Fujibe T et al (2010) Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Hanano K, Kariya A et al (2011) CUP-SHAPED COTYLEDON1 transcription factor activates the expression of LSH4 and LSH3, two members of the ALOG gene family, in shoot organ boundary cells. Plant J 66:1066–1077

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Aya K, Ueguchi-Tanaka M et al (2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444

    Article  CAS  PubMed  Google Scholar 

  • Twell D (2011) Male gametogenesis and germline specification in flowering plants. Sex Plant Reprod 24:149–160

    Article  PubMed  Google Scholar 

  • Wang JJ, Guo HS (2015) Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis. Plant Cell 27:574–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Wang LJ, Mao YB et al (2005) Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Gu X, Xu D et al (2011) miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis. J Exp Bot 62:761–773

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun F, Cao H et al (2012) TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response. PLoS One 7:e48445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Niu QW, Wu HW et al (2015) Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits. Plant J 84:404–416

    Article  CAS  PubMed  Google Scholar 

  • Wei LQ, Yan LF, Wang T (2011) Deep sequencing on genome-wide scale reveals the unique composition and expression patterns of microRNAs in developing pollen of Oryza sativa. Gen Biol 12:R53

    Article  CAS  Google Scholar 

  • Wierzbicki AT (2012) The role of long non-coding RNA in transcriptional gene silencing. Curr Opin Plant Biol 15:517–522

    Article  CAS  PubMed  Google Scholar 

  • Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Park MY, Conway SR et al (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HJ, Wang ZM, Wang M et al (2013) Widespread long noncoding RNAs as endogenous target mimics for microRNAs in plants. Plant Physiol 161:1875–1884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Wu C, Xiong L (2006) Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice. Plant Physiol 142:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin M, Wang Y, Yao Y et al (2011) Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing. BMC Plant Biol 11:61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing S, Salinas M, Hohmann S et al (2010) miR156-targeted and nontargeted SBP-box transcription factors act in concert to secure male fertility in Arabidopsis. Plant Cell 22:3935–3950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing S, Salinas M, Garcia-Molina A et al (2013) SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning. Plant J 75:566–577

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Wang X, Gu S et al (2008) Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 407:1–11

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Li D, Mao D et al (2013a) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.) Plant Cell Environ 36:2207–2218

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Tian L, Sun MX et al (2013b) AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiol 162:720–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin ZJ, Shen FF (2010) Identification and characterization of conserved microRNAs and their target genes in wheat (Triticum aestivum). Genet Mol Res 9:1186–1196

    Article  CAS  PubMed  Google Scholar 

  • Yuan JH, Yang F, Wang F et al (2014) A long noncoding RNA activated by TGF-beta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 25:666–681

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Chia JM, Kumari S et al (2009) A genome-wide characterization of microRNA genes in maize. PLoS Genet 5:e1000716

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Zhao H, Xie S et al (2011) Extensive, clustered parental imprinting of protein-coding and noncoding RNAs in developing maize endosperm. Proc Natl Acad Sci USA 108:20042–20047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YC, Liao JY, Li ZY et al (2014) Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15:512

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu QH, Helliwell CA (2011) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Qin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, YC., Chen, YQ. (2017). Epigenetic Regulation by Noncoding RNAs in Plant Development. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Plant Epigenetics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-55520-1_10

Download citation

Publish with us

Policies and ethics