Skip to main content

Reconstruction of Far-Field Tsunami Amplitude Distributions from Earthquake Sources

  • Chapter
  • First Online:
Global Tsunami Science: Past and Future, Volume I

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 879 Accesses

Abstract

The probability distribution of far-field tsunami amplitudes is explained in relation to the distribution of seismic moment at subduction zones. Tsunami amplitude distributions at tide gauge stations follow a similar functional form, well described by a tapered Pareto distribution that is parameterized by a power-law exponent and a corner amplitude. Distribution parameters are first established for eight tide gauge stations in the Pacific, using maximum likelihood estimation. A procedure is then developed to reconstruct the tsunami amplitude distribution that consists of four steps: (1) define the distribution of seismic moment at subduction zones; (2) establish a source-station scaling relation from regression analysis; (3) transform the seismic moment distribution to a tsunami amplitude distribution for each subduction zone; and (4) mix the transformed distribution for all subduction zones to an aggregate tsunami amplitude distribution specific to the tide gauge station. The tsunami amplitude distribution is adequately reconstructed for four tide gauge stations using globally constant seismic moment distribution parameters established in previous studies. In comparisons to empirical tsunami amplitude distributions from maximum likelihood estimation, the reconstructed distributions consistently exhibit higher corner amplitude values, implying that in most cases, the empirical catalogs are too short to include the largest amplitudes. Because the reconstructed distribution is based on a catalog of earthquakes that is much larger than the tsunami catalog, it is less susceptible to the effects of record-breaking events and more indicative of the actual distribution of tsunami amplitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K. (1979), Size of great earthquake of 1837–1974 inferred from tsunami data, J. Geophys. Res., 84, 1561–1568.

    Article  Google Scholar 

  • Abe K. (1989), Quanitification of tsunamigenic earthquakes by the Mt scale, Tectonophys., 166, 27–34.

    Google Scholar 

  • Ben-Menahem A., Rosenman M. (1972), Amplitude patterns of tsunami waves from submarine earthquakes, J. Geophys. Res., 77, 3097–3128.

    Article  Google Scholar 

  • Bird P., Kagan Y.Y. (2004), Plate-tectonic analysis of shallow seismicity: apparent boundary width, beta-value, corner magnitude, coupled lithosphere thickness, and coupling in 7 tectonic settings, Bull. Seismol. Soc. Am., 94, 2380–2399.

    Google Scholar 

  • Burroughs S.M., Tebbens S.F. (2001), Upper-truncated power laws in natural systems, Pure Appl. Geophys., 158, 741–757.

    Article  Google Scholar 

  • Burroughs S.M., Tebbens S.F. (2005), Power law scaling and probabilistic forecasting of tsunami runup heights, Pure Appl. Geophys., 162, 331–342.

    Article  Google Scholar 

  • Clauset A., Shalizi C.R., Newman M.E.J. (2009), Power-law distributions in empirical data, SIAM Review, 51, 661–703.

    Article  Google Scholar 

  • Comer R.P. (1980), Tsunami height and earthquake magnitude: theoretical basis of an empirical relation, Geophys. Res. Lett., 7, 445–448.

    Article  Google Scholar 

  • Ekström G., Nettles M. (1997), Calibration of the HGLP seismograph network and centroid-moment tensor analysis of significant earthquakes of 1976, Physics of the Earth and Planetary Interiors, 101, 221–246.

    Article  Google Scholar 

  • Engdahl E.R., Villaseñor A. (2002), Global seismicity: 1900-1999. In: Lee WHK, Kanamori H, Jennings PC, Kisslinger C (eds), International Handbook of Earthquake and Engineering Seismology, Part A. Academic Press, San Diego, pp. 665–690.

    Google Scholar 

  • Geist E.L. (1999), Local tsunamis and earthquake source parameters, Adv. Geophys., 39, 117–209.

    Google Scholar 

  • Geist E.L. (2012), Phenomenology of tsunamis II: scaling, Event Statistics, and Inter-Event Triggering, Adv. Geophys., 53, 35–92.

    Google Scholar 

  • Geist E.L. (2014), Explanation of temporal clustering of tsunami sources using the epidemic-type aftershock sequence model, Bull. Seismol. Soc. Am., 104, 2091–2103.

    Article  Google Scholar 

  • Geist E.L., Parsons T. (2006), Probabilistic analysis of tsunami hazards, Natural Hazards, 37, 277–314.

    Article  Google Scholar 

  • Geist E.L., Parsons T. (2011), Assessing historical rate changes in global tsunami occurrence, Geophys. J. Int., 187, 497–509.

    Google Scholar 

  • Geist E.L., Parsons T. (2014), Undersampling power-law size distributions: effect on the assessment of extreme natural hazards, Natural Hazards, 72, 565-595. doi:10.1007/s11069-013-1024-0.

    Article  Google Scholar 

  • Geist E.L., Parsons T., ten Brink U.S., Lee H.J. (2009), Tsunami Probability. In: Bernard EN, Robinson AR (eds), The Sea, v. 15. Harvard University Press, Cambridge, Massachusetts, pp. 93–135.

    Google Scholar 

  • Geist E.L., ten Brink U.S., Gove M. (2014), A framework for the probabilistic analysis of meteotsunamis, Natural Hazards, 74, 123-142. doi:10.1007/s11069-014-1294-1.

    Article  Google Scholar 

  • Geller R.J., Kanamori H. (1977), Magnitudes of great shallow earthquakes from 1904 to 1952, Bull. Seismol. Soc. Am., 67, 587–598.

    Google Scholar 

  • Gutenberg B., Richter C.F. (1944), Frequency of earthquakes in California, Bull. Seismol. Soc. Am., 34, 185–188.

    Google Scholar 

  • Hatori T. (1971), Tsunami sources in Hokkaido and southern Kuril regions, Bulletin of the Earthquake Research Institute, 49, 63–75.

    Google Scholar 

  • Horrillo J., Knight W., Kowalik Z. (2008), Kuril Islands tsunami of November 2006: 2. Impact at Crescent City by local enhancement, J. Geophys. Res., 113, doi:10.1029/2007JC004404.

  • Huber P.J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In: Proceedings of the fifth Berkeley symposium on mathematica statistics and probability, pp. 221–233.

    Google Scholar 

  • Ishimoto M., Iida K. (1939), Observations of earthquakes registered with the microseismograph constructed recently, Bulletin of the Earthquake Research Institute, 17, 443–478.

    Google Scholar 

  • Kagan Y.Y. (1997), Seismic moment-frequency relation for shallow earthquakes: regional comparison, J. Geophys. Res., 102, 2835–2852.

    Article  Google Scholar 

  • Kagan Y.Y. (1999), Universality of the seismic-moment-frequency relation, Pure Appl. Geophys., 155, 537–573.

    Article  Google Scholar 

  • Kagan Y.Y. (2002a), Seismic moment distribution revisited: I. Statistical results, Geophys. J. Int., 148, 520–541.

    Article  Google Scholar 

  • Kagan Y.Y. (2002b), Seismic moment distribution revisited: II. Moment conservation principle, Geophys. J. Int., 149, 731–754.

    Article  Google Scholar 

  • Kagan Y.Y. (2010), Earthquake size distribution: power-law with exponent β = 1/2?, Tectonophys., 490, 103–114.

    Google Scholar 

  • Kagan Y.Y., Bird P., Jackson D.D. (2010), Earthquake patterns in diverse tectonic zones of the globe, Pure Appl. Geophys., 167, 721–741.

    Article  Google Scholar 

  • Kagan Y.Y., Jackson D.D. (2013), Tohoku earthquake: a surprise?, Bull. Seismol. Soc. Am., 103, 1181–1194.

    Article  Google Scholar 

  • Kempthorne O., Folks L. (1971), Probability, statistics, and data analysis. Iowa State University Press, Ames, Iowa.

    Google Scholar 

  • López-Ruiz R., Vázquez-Prada M., Gómez J.B., Pacheco A.F. (2004), A model of characteristic earthquakes and its implications for regional seismicity, Terra Nova, 16, 116–120.

    Article  Google Scholar 

  • Main I., Naylor M., Greenhough J., Touati S., Bell A.F., McCloskey J. (2011), Model selection and uncertainty in earthquake hazard analysis. In: Faber M, Köhler J, Nishijima K (eds), Applications of Statistics and Probability in Civil Engineering. CRC Press, Leiden, The Netherlands, pp. 735–743.

    Chapter  Google Scholar 

  • McCaffrey R. (2008), Global frequency of magnitude 9 earthquakes, Geology, 36, 263–266.

    Article  Google Scholar 

  • Okal E.A. (1988), Seismic parameters controlling far-field tsunami amplitudes: a review, Natural Hazards, 1, 67–96.

    Google Scholar 

  • Olami Z., Feder H.J.S., Christensen K. (1992), Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Physical Review Letters, 68, 1244–1247.

    Article  Google Scholar 

  • Pacheco J.F., Sykes L.R. (1992), Seismic moment catalog of large shallow earthquakes, 1900 to 1989, Bull. Seismol. Soc. Am., 82, 1306–1349.

    Google Scholar 

  • Parsons T., Console R., Falcone G., Murru M., Yamashina K. (2012), Comparison of characteristic and Gutenberg-Richter models for time-dependent M  7.9 earthquake probability in the Nankai-Tokai subduction zone, Japan, Geophys. J. Int., doi:10.1111/j.1365-1246X.2012.05595.x.

  • Parsons T., Geist E.L. (2009), Is there a basis for preferring characteristic earthquakes over a Gutenberg-Richter distribution in probabilistic earthquake forecasting?, Bull. Seismol. Soc. Am., 99, 2012–2019. doi:10.1785/0120080069.

    Article  Google Scholar 

  • Parsons T., Geist E.L. (2012), Were global M  8.3 earthquake time intervals random between 1900–2011?, Bull. Seismol. Soc. Am., 102, doi:10.1785/0120110282.

    Article  Google Scholar 

  • Parsons T., Geist E.L. (2014), The 2010–2014.3 global earthquake rate increase, Geophys. Res. Lett., 41, 4479–4485. doi:10.1002/2014GL060513.

    Article  Google Scholar 

  • Pawitan Y. (2001), In all likelihood: statistical modelling and inference using likelihood. Oxford University Press, Oxford.

    Google Scholar 

  • Pelayo A.M., Wiens D.A. (1992), Tsunami earthquakes: slow thrust-faulting events in the accretionary wedge, J. Geophys. Res., 97, 15,321–315,337.

    Article  Google Scholar 

  • Rabinovich A.B., Thomson R.E. (2007), The 26 December 2004 Sumatra tsunami: analysis of tide gauge data from the world ocean Part 1. Indian Ocean and South Africa, Pure Appl. Geophys., 164, 261–308.

    Article  Google Scholar 

  • Satake K., Okada M., Abe I. (1988), Tide gauge response to tsunamis: measurements at 40 tide gauge stations in Japan, Journal of Marine Research, 46, 557–571.

    Article  Google Scholar 

  • Sornette D. (2009), Probability distribution in complex systems. In: Meyers RA (ed), Encyclopedia of Complexity and Systems Science. Springer, New York, pp. 7009–7024.

    Chapter  Google Scholar 

  • Vere-Jones D., Robinson R., Yang W. (2001), Remarks on the accelerated moment release model: problems of model formulation, simulation and estimation, Geophys. J. Int., 144, 517–531.

    Article  Google Scholar 

  • Wesnousky S.G. (1994), The Gutenberg-Richter or characteristic earthquake distribution, which is it?, Bull. Seismol. Soc. Am., 84, 1940–1959.

    Google Scholar 

  • White H. (1980), A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity, Econometrica, 48, 817–838.

    Article  Google Scholar 

  • Zöller G. (2013), Convergence of the frequency-magnitude distribution of global earthquakes: maybe in 200 years, Geophys. Res. Lett., 40, 3873–3877.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric L. Geist .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer (outside the USA)

About this chapter

Cite this chapter

Geist, E.L., Parsons, T. (2016). Reconstruction of Far-Field Tsunami Amplitude Distributions from Earthquake Sources. In: Geist, E.L., Fritz, H.M., Rabinovich, A.B., Tanioka, Y. (eds) Global Tsunami Science: Past and Future, Volume I. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55480-8_4

Download citation

Publish with us

Policies and ethics