Skip to main content

The Effects on Tsunami Hazard Assessment in Chile of Assuming Earthquake Scenarios with Spatially Uniform Slip

  • Chapter
  • First Online:
  • 886 Accesses

Part of the book series: Pageoph Topical Volumes ((PTV))

Abstract

We investigated the effect that along-dip slip distribution has on the near-shore tsunami amplitudes and on coastal land-level changes in the region of central Chile (29°–37°S). Here and all along the Chilean megathrust, the seismogenic zone extends beneath dry land, and thus, tsunami generation and propagation is limited to its seaward portion, where the sensitivity of the initial tsunami waveform to dislocation model inputs, such as slip distribution, is greater. We considered four distributions of earthquake slip in the dip direction, including a spatially uniform slip source and three others with typical bell-shaped slip patterns that differ in the depth range of slip concentration. We found that a uniform slip scenario predicts much lower tsunami amplitudes and generally less coastal subsidence than scenarios that assume bell-shaped distributions of slip. Although the finding that uniform slip scenarios underestimate tsunami amplitudes is not new, it has been largely ignored for tsunami hazard assessment in Chile. Our simulations results also suggest that uniform slip scenarios tend to predict later arrival times of the leading wave than bell-shaped sources. The time occurrence of the largest wave at a specific site is also dependent on how the slip is distributed in the dip direction; however, other factors, such as local bathymetric configurations and standing edge waves, are also expected to play a role. Arrival time differences are especially critical in Chile, where tsunamis arrive earlier than elsewhere. We believe that the results of this study will be useful to both public and private organizations for mapping tsunami hazard in coastal areas along the Chilean coast, and, therefore, help reduce the risk of loss and damage caused by future tsunamis.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aránguiz, R., González, G., González, J., Catalán, P., Cienfuegos, R., Yagi, Y., Okuwaki, R., Urra, L., Contreras, K., Del Rio, I., and Rojas, C. (2016), The 16 September 2015 Chile Tsunami from the Post-Tsunami Survey and Numerical Modeling Perspectives. Pure Appl. Geophys., 173 (2), 333–348.

    Google Scholar 

  • Barrientos, S. (2007), Earthquakes in Chile. In Moreno, T. and Gibbons, W. Ed, The Geology of Chile. Geological Society of London, 2007, p. 263–287.

    Google Scholar 

  • Beck, S., Barrientos, S., and Kausel, E. (1998), Source characteristics of historic earthquakes along the central Chile subduction zone, J. S. Am. Earth Sci., 11(2), 115–129.

    Google Scholar 

  • Bletery, Q., Sladen, A., Delouis, B., Vallée, M., Nocquet, J.M., Rolland, L., and Jiang, J. (2014), A detailed source model for the Mw9.0 Tohoku-Oki earthquake reconciling geodesy, seismology, and tsunami records, J. Geophys. Res. Solid Earth, 119. doi:10.1002/2014JB011261.

    Google Scholar 

  • Carvajal, M., and Gorigoitía, N. (2015), Size of the unusual 1730 central Chile earthquake, constrained by written records and tsunami deposits. XIV Congreso geológico Chileno, La Serena, Chile, p 344–347.

    Google Scholar 

  • Freund, L.B., and Barnett, D.M. (1976), A two-dimensional analysis of surface deformation due to dip-slip faulting: Bull. Seismol. Soc. Am., v. 66, p. 667–675.

    Google Scholar 

  • Geist, E. L., and Dmowska, R. (1999), Local tsunamis and distributed slip at the source, Pure Appl. Geophys. 154, 485–512.

    Article  Google Scholar 

  • Geist, E. (2002), Complex earthquake rupture and local tsunamis, J. Geophys. Res., 107(B5), ESE 2–1–ESE 2-15. doi:10.1029/2000JB000139.

  • Geist, E. L., and Parsons, T. (2006), Probabilistic Analysis of Tsunami Hazards, Nat. Hazards, 37 (3), 277–314.

    Article  Google Scholar 

  • Goda, K., Mai, P.M., Yasuda, T., and Mori, N. (2014), Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth Planets Space, 66(1), 1–20.

    Article  Google Scholar 

  • González, F.I., Geist, E.L., Jaffe, B., Kânoğlu, U., Mofjeld, H., Synolakis, C.E., Titov, V.V., Arcas, D., Bellomo, D., Carlton, D., Horning, T., Johnson, J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., Wong, F., and Yalciner A. (2009), Probabilistic tsunami hazard assessment at Seaside, Oregon for near-and far-field sources. J. Geophys. Res., 114, C11023.

    Google Scholar 

  • Heidarzadeh, M., Pirooz, M.D., Zaker, N.H., and Synolakis, C.E. (2008), Evaluating tsunami hazard in the northwestern Indian Ocean. Pure Appl. Geophys, 165(11–12):2045–2058.

    Article  Google Scholar 

  • Heidarzadeh, M., Murotani, S., Satake, K., Ishibe, T., and Gusman, A.R. (2016), Source model of the 16 September 2015 Illapel, Chile, Mw 8.4 earthquake based on teleseismic and tsunami data, Geophys. Res. Lett., 43. doi:10.1002/2015GL067297.

    Article  Google Scholar 

  • Hu, Y., and Wang, K. (2008), Coseismic strengthening of the shallow portion of the subduction fault and its effects on wedge taper, J. Geophys. Res., 113, B12411. doi:10.1029/2008JB005724.

  • IOC, IHO, BODC. (2003), The Centenary Edition of the GEBCO digital atlas (CD-ROM).

    Google Scholar 

  • Kajiura, K. (1970), Tsunami source, energy and the directivity of wave radiation. Bull. Earthq. Res. I. Tokyo. University of Tokyo, 48, 835–869.

    Google Scholar 

  • Kelleher, J.A. (1972), Rupture zones of large South American earthquakes and some predictions. J. geophys. Res., 77(11), 2087–2103.

    Article  Google Scholar 

  • Lay, T., Ammon, C. J., Kanamori, H., Koper, K.D., Sufri, O., and Hutko, A.R. (2010), Teleseismic inversion for rupture process of the 27 February 2010 Chile (Mw 8.8) earthquake, Geophys. Res. Lett., 37, L13301. doi:10.1029/2010GL043379.

    Article  Google Scholar 

  • Lay, T., Kanamori, H., Ammon, C.J., Koper, K.D., Hutko, A.R., Ye, L., Yue, H., and Rushing, T.M. (2012), Depth-varying rupture properties of subduction zone megathrust faults, J. Geophys. Res.,117, B04311. doi:10.1029/2011JB009133.

    Article  Google Scholar 

  • Lomnitz, C. (1970), Major earthquakes and tsunamis in Chile during the period 1535 to 1955, Geologische Rundschau, 59, 938–960. doi:10.1007/BF02042278.

    Article  Google Scholar 

  • Moreno, M.S., Bolte, J., Klotz, J., and Melnick, D. (2009), Impact of megathrust geometry on inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake, Geophys. Res. Lett., 36, L16310. doi:10.1029/2009GL039276.

  • Moreno, M., Melnick, D., Rosenau, M., Báez, J.C., Klotz, J., Oncken, O., Tassara, A., Bataille, K., Chen, J., Socquet, A., Bevis, M., Bolte, J., Vigny, C., Brooks, B., Ryder, I., Grund, V., Smalley, R., Carrizo, D., Bartsch, M., and Hase, H. 2012. Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. E. Earth Planet. Sci. Lett., 321: 152–165.

    Google Scholar 

  • Okada, Y. (1985), Surface deformation due to shear and tensile faults in a half space, Bull. Seismol. Soc. Am., Vol. 75, No. 4, pp. 1135–1154.

    Google Scholar 

  • Okal, E. A., Borrero, J. C., and Synolakis, C. E. (2006), Evaluation of tsunami risk from regional earthquakes at Pisco, Peru, B. Seismol. Soc. Am., 96(5), 1634–1648.

    Google Scholar 

  • Omira, R., Baptista, M.A., and Lisboa, F. (2016), Tsunami Characteristics Along the Peru-Chile trench: Analysis of the 2015 Mw8.3 Illapel, the 2014 Mw8.2 Iquique and the 2010 Mw8.8 Maule Tsunamis in the Near-field, Pure Appl. Geophys., 173, pp. 1063–1077.

    Article  Google Scholar 

  • Rabinovich, A. B. (2009), Seiches and harbor oscillations. Handbook of coastal and ocean engineering, 193–236.

    Chapter  Google Scholar 

  • Rosenau, M., Nerlich, R., Brune, S., and Oncken, O. (2010), Experimental insights into the scaling and variability of local tsunamis triggered by giant subduction megathrust earthquakes, J. Geophys. Res., 115.B9, 2156–2202. doi:10.1029/2009JB007100.

  • Ruiz, J., Fuentes, M., Riquelme, S., Campos, J., and Cisternas, A. (2015), Numerical simulation of tsunami runup in northern Chile based on non-uniform k  2 slip distribution, Nat. Hazards,1–22. doi:10.1007/s11069-015-1901-9.

    Article  Google Scholar 

  • Satake, K., Fujii, Y., Harada, T., and Namegaya, Y. (2013), Time and Space Distribution of Coseismic Slip of the 2011 Tohoku Earthquake as Inferred from Tsunami Waveform Data, Bull. Seismol. Soc. Am., 103(2B) 1473–1492. doi:10.1785/0120120122.

    Article  Google Scholar 

  • Satake, K. (2014), Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami, Geo. Lett., 1–15. doi:10.1186/s40562-014-0015-7.

  • SHOA (2015), Pub. SHOA N° 3204, Instrucciones Oceanográficas N°4, “Especificaciones Técnicas para la Elaboración de Cartas de Inundación por Tsunami (CITSU)” 1ª Edición, 2015.

    Google Scholar 

  • Shuto, N. (1991), Numerical Simulation of Tsunamis. Its past, present and near future. Nat. Hazards, 4, pp. 171–191.

    Google Scholar 

  • Tassara, A., and Echaurren, A. (2012), Anatomy of the Andean subduction zone: three-dimensional density model upgraded and compared against global-scale models, Geophys. J. Int., 189:161–168.

    Article  Google Scholar 

  • Tilmann, F., Zhang, y., Moreno, M., Saul, J., Eckelmann, F., Palo, M., Deng, Z., Babeyko, A., Chen, K., Baez, J.C., Schurr, B., Wang, R., and Dahm, T. (2015), The 2015 Illapel earthquake, central Chile, a type case for a characteristic earthquake?, Geophys. Res. Lett. doi:10.1002/2015GL066963.

    Article  Google Scholar 

  • Yamazaki, Y., Cheung, K. F., and Lay, T. (2013), Modeling of the 2011 Tohoku Near‐Field Tsunami from Finite Fault Inversion of Seismic Waves. Bull. Seismol. Soc. Am, 103(2B), 1444–1455.

    Article  Google Scholar 

  • Wang, X. (2009), User manual for COMCOT version 1.7, first draft. Cornell University, 59 pp.

    Google Scholar 

  • Wang, K., and He, J. (2008), Effects of frictional behavior and geometry of subduction fault on coseismic seafloor deformation, Bull. Seismol. Soc. Am., v. 98, no. 2, p. 571–579. doi:10.1785/0120070097.

    Article  Google Scholar 

  • Wang, P. L., Engelhart, S. E., Wang, K., Hawkes, A. D., Horton, B. P., Nelson, A. R., and Witter, R. C. (2013), Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates. J. Geophys. Res., 118(5), 2460–2473. 

    Google Scholar 

  • Witter, R. C., Zhang, Y. J., Wang, K., Priest, G. R., Goldfinger, C., Stimely, L., English, J. T., and Ferro, P. A. (2013), Simulated tsunami inundation for a range of Cascadia megathrust earthquake scenarios at Bandon, Oregon, USA. Geosphere., 9(6), 1783–1803. doi:10.1130/GES00899.1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matías Carvajal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Carvajal, M., Gubler, A. (2016). The Effects on Tsunami Hazard Assessment in Chile of Assuming Earthquake Scenarios with Spatially Uniform Slip. In: Geist, E.L., Fritz, H.M., Rabinovich, A.B., Tanioka, Y. (eds) Global Tsunami Science: Past and Future, Volume I. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55480-8_3

Download citation

Publish with us

Policies and ethics