Skip to main content

Very Fast Characterization of Focal Mechanism Parameters Through W-Phase Centroid Inversion in the Context of Tsunami Warning

  • Chapter
  • First Online:
Global Tsunami Science: Past and Future, Volume I

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 883 Accesses

Abstract

Most of the tsunami potential seismic sources in the NEAM region are in a magnitude range of \(6.5 \le M_{w} \le 7.5\) (e.g. the tsunami triggered by the Boumerdes earthquake of 2003 with \(M_{w}=6.9\)). The CENtre d’ALerte aux Tsunamis (CENALT), in operation since 2012 as the French National Tsunami Warning Centre (NTWC) and Candidate Tsunami Service Provider (CTSP), has to issue warning messages within 15 min of earthquake origin time. These warnings are based on the seismic source parameters (\(M_{w}\) magnitude, focal depth and type of fault), which are computed by focal mechanisms and centroid inversion methods. The W-phase method, developed by Kanamori and Rivera, allows quick computation of seismic source parameters due to the early arrival time between P-waves and surface waves, and is therefore particularly useful for monitoring. We assess the W-phase method with 29 events of magnitude \(M_w \ge\) 5.8 for the period 2010–2015 in the NEAM region. Results with 10 min of signal length are in good agreement compared to the Global Centroid Moment Tensor (GCMT) catalog.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alasset, P.-J., Hébert, H., Maouche, S., Calbini, V., and Meghraoui, M. (2006). The tsunami induced by the 2003 Zemmouri earthquake (Mw = 6.9, Algeria): modelling and results. Geophys. J. Int., 166:213–226.

    Google Scholar 

  • Cummins, P. (1997). Earthquakes near field and Wphase observations at teleseismic distances. Geophys. Res. Lett., 24:2857–2860.

    Article  Google Scholar 

  • Duputel, Z., Rivera, L., Kanamori, H., and Hayes, G. (2012). W-phase fast source inversion for moderate to large earthquakes (1990–2010). Geophys. J. Int., 189:1125–1147.

    Google Scholar 

  • Dziewonski, A. and Anderson, D. (1981). Preliminary Reference Earth Model. Phys. Earth Planet. Inter., 25(4):297–356.

    Article  Google Scholar 

  • Ekström, G., Dziewonski, A., Maternovskaya, N., and Nettles, M. (2005). Global seismicity of 2003: Centroid-moment-tensor solutions for 1087 earthquakes. Phys. Earth Planet. Inter., 148:327–351.

    Article  Google Scholar 

  • Ekström, G. and Engdahl, E.R. (1989). Earthquake source parameters and stress distribution in the Adak Island region of the central Aleutian Islands, Alaska. J. Geophys. Res., 94:15499–15519.

    Article  Google Scholar 

  • Frohlich, C. and Apperson, K. (1992). Earthquake focal mechanisms, moment tensors, and the consistency of seismic activity near plate boundaries. Tectonics, 11:279–296.

    Article  Google Scholar 

  • Gailler, A., Hébert, H., Loevenbruck, A., and Hernandez, B. (2013). Simulation systems for tsunami wave propagation forecasting within the French tsunami warning center. Nat. Hazards Earth Syst. Sci., 13:2465–2482.

    Article  Google Scholar 

  • Hayes, G., Rivera, L., and Kanamori, H. (2009). Source inversion of the W-phase: Real-time implementation and extension to low magnitudes. Seismol. Res. Lett., 80:817–822.

    Article  Google Scholar 

  • Herrmann, R. B. (2013). Computer programs in seismology: An evolving tool for instruction and research. Seismol. Res. Lett., 84:1081–1088.

    Article  Google Scholar 

  • Kagan, Y.Y. (1991). 3 D rotation of double couple earthquakes source. Geophys. J. Int., 106:709–716.

    Google Scholar 

  • Kanamori, H. (1993). W phase. Geophys. Res. Lett., 20(16):1691–1694.

    Article  Google Scholar 

  • Kanamori, H. and Anderson, D. (1975). Theoretical basis of some empirical relations in seismology. Bull. Seism. Soc. Am., 65:1073–1095.

    Google Scholar 

  • Kanamori, H. and Rivera, L. (2008). Source inversion of W phase: Speeding up seismic tsunami warning. Geophys. J. Int., 175:222–238.

    Article  Google Scholar 

  • Okal, E.A. (1988). Seismic Parameters Controlling Far-Field Tsunami Amplitudes: A review. Natural Hazards, 1:67–96.

    Article  Google Scholar 

  • Rivera, L., Kanamori, H. (2014) Diagnosing Source Geometrical Complexity of Large Earthquakes. Pure Appl. Geophys., 171:2819–2840.

    Article  Google Scholar 

  • Roger, J., Allgeyer, S., Hébert, H., Baptista, M. A., Loevenbruck, A., and Schindelé, F. (2010). The 1755 Lisbon tsunami in Guadeloupe archipelago: Source sensitivity and investigation of resonance effects. Open Oceanogr. J., 4:58–70.

    Article  Google Scholar 

  • Roudil, P., Schindelé, F., Bossu, R., Alabrune, N., Arnoul, P., Duperray, P., Gailler, A., Guilbert, J., Hébert, H., and Loevenbruck, A. (2013). French tsunami warning center for the Mediterranean and Northeast Atlantic—CENALT. Science of Tsunami Hazard, 32(1):1–7.

    Google Scholar 

  • Sahal, A., Roger, J., Allgeyer, S., Lemaire, B., Hébert, H. Schindelé, F., and Lavigne, F. (2009). The tsunami triggered by the 21 may 2003 Boumerdès-Zemmouri (Algeria) earthquake: field inverstigations on the French Mediterranean coast and tsunami modelling. Nat. Hazards Earth Syst. Sci., 9:1823–1834.

    Article  Google Scholar 

  • Schindelé, F., Gailler, A., Hébert, H., Loevenbruck, A., Gutierrez, E., Monnier, A., Roudil, P., Reymond, D., and Rivera, L. (2015). Implementation and challenges of the tsunami warning system in the western Mediterranean. Pure Appl. Geophys., 172:821–833.

    Article  Google Scholar 

  • Tinti, S., Armigliato, A., Bortolucci, E., and Piatanesi, A. (1999). Identification of the source fault of the 1908 Messina earthquake through tsunami modelling. is it a possible task? Phys. Chem.Earth B., 24:417–421.

    Article  Google Scholar 

  • Vallée, M., Charléty, J., Ferreira, A. M. G., Delouis, B., and Vergoz, J. (2011). SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body-wave deconvolution. Geophys. J. Int., 184(1):338–358.

    Article  Google Scholar 

  • Weber, B., Becker, J., Hanka, W., Heinloo, A., Hoffmann, M., Kraft, T., Pahlke, D., Reinhardt, J., and Thoms, H. (2007). SeisComP3—automatic and interactive real time data processing. In EGU General Assembly, volume 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Roch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Roch, J., Duperray, P., Schindelé, F. (2016). Very Fast Characterization of Focal Mechanism Parameters Through W-Phase Centroid Inversion in the Context of Tsunami Warning. In: Geist, E.L., Fritz, H.M., Rabinovich, A.B., Tanioka, Y. (eds) Global Tsunami Science: Past and Future, Volume I. Pageoph Topical Volumes. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-55480-8_12

Download citation

Publish with us

Policies and ethics