Skip to main content

The Hydrothermal System and Geothermal Activity

  • Chapter
  • First Online:
Nisyros Volcano

Abstract

Nisyros volcano’s activity is characterized by high seismic unrest, hydrothermal explosions, degassing through fumarolic activity and diffuse degassing structures. Hydrothermal explosions in the caldera floor of unknown age until recently created a complex set of intersecting crater structures with evident structural controls. Low-temperature thermal springs and fumaroles occur along known and inferred fracture systems and their crossing points, springs preferentially along the coast and fumaroles within the caldera and its hydrothermal explosion craters. Their chemical and isotopic signatures reflect phase separation and mixing to varying degrees with magmatic, hydrothermal, meteoric, and seawater components. A deep hot hydrothermal brine with seawater and magmatic influence feeds thermal fluid and gases by vapor separation into a set of intermediate thermal aquifers, which have been explored by drilling. A shallow low-temperature aquifer results from steam condensation and the resulting surface manifestations emit hot steam-gas mixtures at up to boiling temperature. Widespread diffuse degassing of CO2 demonstrates the permeable nature of the Nisyros hydrothermal system, focusing along fault systems, releasing 68 t d−1 of CO2 and 58 MW of thermal energy. The last magmatic activity of Nisyros, even if of unknown age, is considered relatively old, based on morphological considerations and on the absence of historical magmatic eruptions. Nevertheless, there are many geochemical indications supporting the presence of a magmatic source at depth, which feeds the hydrothermal system. This evidence is mainly constituted by the isotopic composition of H2O, S, and He discharged by the Nisyros fumaroles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aggelidis Z, Pavlidis S, Dikianidou D, Mbalaktsi M (1990) Nisyros an active volcano (in Greek). University Studio Press, Thessaloniki, 36 p

    Google Scholar 

  • Ambrosio M, Doveri M, Fagioli MT, Marini L, Principe C, Raco B (2010) Water–rock interaction in the magmatic-hydrothermal system of Nisyros Island (Greece). J Volcanol Geotherm Res. doi:10.1016/jjvolgeores201002005

  • Barnes I, Leonis C, Papastamataki A (1986) Stable isotope tracing of the origin of CO2 discharges in Greece. In: Morfis A, Paraskevopoulou (eds) Proceedings of the 5th international symposium on underground water tracing, Athens, pp 25–42

    Google Scholar 

  • Bencini A, Duchi V, Martini M (1981) Thermal waters from the islands of the Aegean arc (Greece). Rend Soc Ital Mineral Petrol 37:921–928

    Google Scholar 

  • Bischoff JL, Dickson FW (1975) Seawater-basalt interaction at 200 C and 500 bars: implications for origin of sea-floor heavy-metal deposits and regulation of seawater chemistry. Earth Planet Sci Lett 14:274–286

    Google Scholar 

  • Brombach T (2000) Fluid geochemistry of hydrothermal systems in volcanic island arcs: Guadeloupe (Lesser Antilles) and Nisyros (Greece). PhD thesis, Lausanne University

    Google Scholar 

  • Brombach T, Cardellini C, Chiodini G, Hunziker JC, Marini L (2001) Soil diffuse degassing and thermal energy fluxes from the southern Lakki plain, Nisyros (Greece). Geophys Res Lett 28:69–72

    Article  Google Scholar 

  • Brombach T, Caliro S, Chiodini G, Fiebig J, Hunziker JC, Raco B (2003) Geochemical evidence for mixing of magmatic fluids with seawater. Nisyros hydrothermal system, Greece Bull Volcanol 65:505–516

    Google Scholar 

  • Buondelmonti C (1420) Liber Insularum archipelagi (orig in Latin, illuminated manuscript on vellum; published Sotheby’s; Western Manuscripts and Miniatures, London, 22 June 2004)

    Google Scholar 

  • Caliro S, Chiodini G, Galluzzo D, Granieri D, La Rocca M, Saccorotti G, Ventura G (2005) Recent activity of Nisyros volcano (Greece) inferred from structural, geochemical and seismological data. Bull Volcanol 67:358–369

    Article  Google Scholar 

  • Cannata A, Giudice G, Gurrieri S, Montalto P, Alparone S, Di Grazia G, Favara R, Gresta S, Liuzzo M (2010) Relationship between soil CO2 flux and volcanic tremor at Mt Etna: implications for magma dynamics. Environ Earth Sci 61:477–489

    Article  Google Scholar 

  • Cardellini C, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J Geophys Res 108(B9). doi:10.1029/2002JB002165

  • Chiodini G, Marini L (1998) Hydrothermal gas equilibria: I The H2O-H2-CO2-CO-CH4 system. Geochim Cosmochim Acta 62:2673–2687

    Article  Google Scholar 

  • Chiodini G, Cioni R, Leonis C, Marini L, Raco B (1993a) Fluid geochemistry of Nisyros Island, Dodecanese, Greece. J Volcanol Geotherm Res 56:95–112

    Article  Google Scholar 

  • Chiodini G, Cioni R, Marini L (1993b) Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Appl Geochem 8:357–371

    Article  Google Scholar 

  • Chiodini G, Cioni R, Magro G, Marini L, Panichi C, Raco B, Russo M (1996a) Chemical and isotopic variations of Bocca Grande fumarole (Solfatara volcano, Phlegrean Fields). Acta Vulcanol 8:228

    Google Scholar 

  • Chiodini G, Cioni R, Frullani A, Guidi M, Marini L, Prati F, Raco B (1996b) Fluid geochemistry of Montserrat Island, West Indies. Bull Volcanol 58:380–392

    Article  Google Scholar 

  • Chiodini G, Brombach T, Caliro S, Cardellini C, Marini L, Dietrich V (2002) Geochemical indicators of possible ongoing volcanic unrest at Nisyros Island (Greece). Geophys Res Lett 29:6-1–6-4

    Google Scholar 

  • Cioni R, Corazza E, Marini L (1984) The gas/steam ratio as indicator of heat transfer at the Solfatara fumaroles, Phlegraean fields (Italy). Bull Volcanol 47:295–302

    Article  Google Scholar 

  • Cioni R, Corazza E, Fratta M, Guidi M, Magro G, Marini L (1989) Geochemical precursors at Solfatara Volcano, Pozzuoli (Italy). In: Latter JH (ed) IAVCEI proceedings in volcanology 1, Volcanic Hazards. Springer, New York, pp 384–398

    Google Scholar 

  • Dietrich VJ, Kipfer R, Schwandner F (1998) Mantle-derived noble gases in the South Aegean volcanic arc: Indicators for incipient magmatic activity and deep crustal movements. Newsletter of the European Centre on Prevention and Forecasting of Earthquakes (Council of Europe) (Sept 1998), pp 28–32

    Google Scholar 

  • Dotsika E (1992) Utilisation du geothermometre isotopique sulfate-eau en milieu de haute temperature sous influence marine potentielle: les systemes geothermaux de Grece. These en Sciences, Université Paris Sud, No 1781

    Google Scholar 

  • Dotsika E, Michelot JL (1993) Hydrochemistry, isotope contents and origin of geothermal fluids at Nisyros (Dodecanese). Bull Geol Soc Greece 28:293–304

    Google Scholar 

  • Dotsika E, Leontiadis I, Poutoukis D, Cioni R, Raco B (2006) Fluid geochemistry of Chios geothermal area, Chios Island, Greece. J Volcanol Geotherm Res 154:237–250

    Article  Google Scholar 

  • Dotsika E, Poutoukis D, Michelot JL, Raco B (2009) Natural tracers for identifying the origin of the thermal fluids emerging along the Aegean Volcanic arc (Greece): evidence of Arc-Type Magmatic Water (ATMW) participation. J Volcanol Geotherm Res 179:19–32

    Article  Google Scholar 

  • Economakis R, de Vries C (2001) Nisyros, history and architecture of an Aegean Island. Publishing House Melissa, Athens, Greece, 199 p

    Google Scholar 

  • Farrar CD, Sorey ML, Evans WC, Howle JF, Kerr BD, Kennedy BM, King CY, Southon JR (1995) Forest-killing diffuse CO2 emission at Mammoth Mountain as a sign of magmatic unrest. Nature 376:675–678

    Article  Google Scholar 

  • Fiebig J, Chiodini G, Caliro S, Rizzo A, Spangenberg J, Hunziker JC (2004) Chemical and isotopic equilibrium between CO2 and CH4 in fumarolic gas discharges: generation of CH4 in arc magmatic-hydrothermal systems. Geochim Cosmochim Acta 68:2321–2334

    Article  Google Scholar 

  • Fiebig J, Woodland AB, Spangenberg J, Oschmann W (2007) Natural evidence for rapid abiogenic hydrothermal generation of CH4. Geochim Cosmochim Acta 71:3028–3039

    Article  Google Scholar 

  • Fiebig J, Woodland AB, D’Alessandro W, Püttmann W (2009) Excess methane in continental hydrothermal emissions is abiogenic. Geology 37:495–498

    Article  Google Scholar 

  • Fiebig J, Tassi F, D’Alessandro W, Vaselli O, Woodland AB (2013) Carbon-bearing gas geothermometers for volcanic-hydrothermal systems. Chem Geol 351:66–75

    Article  Google Scholar 

  • Fischer TP, Arehart GB, Sturchio NC, Williams SN (1996) The relationship between fumarole gas composition and eruptive activity at Galeras Volcano, Colombia. Geology 24:531–534

    Article  Google Scholar 

  • Fytikas M, Andritsos N, Dalabakis P, Kolios N (2005) Greek geothermal update 2000-2004. In: Proceedings of world geothermal congress 2005 Antalya, Turkey, paper 0172

    Google Scholar 

  • Georgalas GC (1922) Carte des Eaux Minerals de la Grèce. Publications du Bureau Géologique 5, Athènes, Imprimérie Nationale

    Google Scholar 

  • Georgalas GC (1962) Catalogue of the active volcanoes and solfatara fields of Greece. Catalogue of the active volcanoes of the world Part XII, International Volcanological Association, pp 1–40

    Google Scholar 

  • Geotermica Italiana (1983) Nisyros 1 geothermal well PPC-EEC report, p 106

    Google Scholar 

  • Geotermica Italiana (1984) Nisyros 2 geothermal well PPC-EEC report, p 44

    Google Scholar 

  • Geowarn (2003) Final report project IST-1999-12310 (www.geowarn.ethz.ch)

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    Article  Google Scholar 

  • Giggenbach WF (1988) Geothermal solute equilibria: derivation of Na-K-Mg-Ca geoindicators. Geochim Cosmochim Acta 41:1638–1654

    Google Scholar 

  • Giggenbach WF (1992) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113:495–510

    Article  Google Scholar 

  • Giggenbach WF (1997) The origin and evolution of fluids in magmatic-hydrothermal systems. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York

    Google Scholar 

  • Giggenbach WF, Stewart MK (1982) Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas. Geothermics 11:71–80

    Article  Google Scholar 

  • Gomez-Tuena A, Langmuir CH, Goldstein SI, Straub SM, Ortega-Gutierrez F (2007) Geochemical evidence for slab melting in the trans-Mexican volcanic belt. J Petrol 48:537–562

    Article  Google Scholar 

  • Gorceix MH (1873a) Sur d’état du volcan de Nisyros au mois de mars 1873. C R Acad Sci (Paris) 77:597–601

    Google Scholar 

  • Gorceix MH (1873b) Sur la récente éruption de Nisyros. CR Acad Sci Paris 77:1039

    Google Scholar 

  • Gorceix MH (1873c) Sur l’éruption boueuse de Nisyros. CR Acad Sci Paris 77:1474–1477

    Google Scholar 

  • Gorceix MH (1874a) Phénomènes volcaniques de Nisyros. CR Acad Sci Paris 77:444–446

    Google Scholar 

  • Gorceix MH (1874b) Sur l’étude des fumerolles de Nisyros et de quelquesuns des produits l’éruption de 1873. CR Acad Sci Paris 77:1309–1311

    Google Scholar 

  • Gorceix MH (1874c) Étude des fumerolles de Nisyros et de quelques-uns des produits des éruptions dont cette ile a été le siége en 1872 et 1873. Ann Chim Phys, Paris, 5me sér II: 333–354

    Google Scholar 

  • Kassaras I, Makropoulos K, Bourova E, Pedersen H, Hatzfeld D (2005) Upper mantle structure of the Aegean derived from two-station phase velocities of fundamental mode Rayleigh waves In: Fytikas M, Vougioukalakis GE (eds) The South Aegean Active Volcanic Arc: present knowledge and future perspectives. Developments in volcanology, vol 7. Elsevier, Amsterdam, pp 19–45

    Google Scholar 

  • Kavouridis T, Kuris D, Leonis C, Liberopoulou V, Leontiadis J, Panichi C, La Ruffa G, Caprai A (1999) Isotope and chemical studies for a geothermal assessment of the island of Nisyros (Greece). Geothermics 28:219–239

    Article  Google Scholar 

  • Kinvig HS, Winson A, Gottsmann J (2010) Analysis of volcanic threat from Nisyros Island, Greece, with implications for aviation and population exposure. Nat Hazards Earth Syst Sci 10:1101–1113

    Article  Google Scholar 

  • Komut T, Gray R, Pysklywec R, Göğüş OH (2012) Mantle flow uplift of western Anatolia and the Aegean: interpretations from geophysical analyses and geodynamic modeling. J Geophys Res 117:B11412

    Article  Google Scholar 

  • Lambrakis N, Katsanou K, Siavalas G (2014) Geothermal fields and thermal waters of Greecxe: an overview. In: Baba A, Bundschuh J, Chandrasekaram D (eds) Geothermal systems and energy resources, Turkey and Greece. CRC Press/Balkema, Taylor & Francis Group, London, pp 28–46

    Google Scholar 

  • Marinelli G, Marini L, Merla A, Sini R, Ungemach P (1983) Geothermal exploration in the island of Nisyros, Dodecanese, Greece. In: Strub AS, Ungemach P (eds) Proceedings of the third international seminar on the results of EC geothermal energy research Reidel, Dordrecht, pp 203–205

    Google Scholar 

  • Marini L, Fiebig J (2005) Fluid geochemistry of the magmatic-hydrothermal system of Nisyros (Aegean arc, Greece). In: Hunziker JC, Marini L (eds) The geology, geochemistry and evolution of Nisyros Volcano (Greece); implications for the volcanic hazards: Memoires de Geologie (Lausanne), vol 44, pp 121–163

    Google Scholar 

  • Marini L, Agostini A, Cioni R, Guidi M, Leon O (1991) Guagua Pichincha volcano, Ecuador: fluid geochemistry in volcanic surveillance. J Volcanol Geotherm Res 46:21–35

    Article  Google Scholar 

  • Marini L, Principe C, Chiodini G, Cioni R, Frytikas M, Marinelli G (1993) Hydrothermal eruptions of Nisyros (Dodecanese, Greece) Past events and present hazard. J Volcanol Geotherm Res 56:71–95

    Article  Google Scholar 

  • Marini L, Gambardella B, Principe C, Arias A, Brombach T, Hunziker JC (2002) Characterization of magmatic sulfur in the Aegean island arc by means of the d34S values of fumarolic H2S, elemental S, and hydrothermal gypsum from Nisyros and Milos islands. Earth Planet Sci Lett 200:15–31

    Article  Google Scholar 

  • Martelli A (1917) Il gruppo eruttivo di Nisiro nel mare Egeo. Mem Mat Fis di Soc Ital Soc dei XL ser 3a, 20:79–165

    Google Scholar 

  • Martini M (1986) Thermal activity and ground deformation at Phlegraean Fields, Italy; precursor of eruptions or fluctuations of quiescent volcanism? A contribution of geochemical studies. J Geophys Res 91(12):255–260

    Google Scholar 

  • Mattioli M, Renzulli A, Agostini A, Lucidi R (2016) Magmas with slab fluid and decompression melting signatures coexisting in the Gulf of Fonseca: evidence from Isla El Tigre volcano (Honduras, Central America). Lithos 240–243:1–15

    Article  Google Scholar 

  • Minissale A, Duchi V, Kolios N, Nocenti M, Verrucchi C (1997) Chemical patterns of thermal aquifers in the volcanic islands of the Aegean arc, Greece. Geothermics 26:501–518

    Article  Google Scholar 

  • Notsu K, Nakai S, Igarashi G, Ishibashi J, Mori T, Suzuki M, Wakita H (2001) Spatial distribution and temporal variation of 3He/4He in hot spring gas released from Unzen volcanic area, Japan. J Volcanol Geotherm Res 111:89–98

    Article  Google Scholar 

  • Panichi C, La Ruffa G (2001) Stable isotope geochemistry of fumaroles: an insight into volcanic surveillance. J Geodyn 32:519–542

    Article  Google Scholar 

  • Panichi C, La Ruffa G, Kavouridis T, Leontiadis J, Leonis C, Liberopoulou V, Dotsika E (2000) Geochemical assessment of the thermal fluids emerging, along the Aegean volcanic arc (Greece). In: Proceedings of World geothermal congress, Kyushu –Tohoku, pp 1565–1570

    Google Scholar 

  • Paonita A, Caracausi A, Martelli M, Rizzo AL (2016) Temporal variations of helium isotopes in volcanic gases quantify pre-eruptive refill and pressurization in magma reservoirs: The Mount Etna case. Geology 44–47. doi:10.1130/G378071

  • Papadopoulos GA, Sachpazi M, Panopoulou G, Stavrakakis G (1998) The volcanoseismic crisis of 1996-97 in Nisyros, SE Aegean Sea, Greece. Terra Nova 10:151–154

    Google Scholar 

  • Principe C (1989) Le eruzioni freatiche di Nisyros (Dodecaneso, Grecia): studio geologico preliminare. Boll GNV 931–949

    Google Scholar 

  • Ross L (1843) Reisen auf den griechischen Inseln II. 70–72 Stuttgart-Tübingen

    Google Scholar 

  • Sano Y, Marty B (1995) Origin of carbon in fumarolic gas from island arcs. Chem Geol 119:265–274

    Article  Google Scholar 

  • Sano Y, Notsu K, Ishibashi J, Igarashi G, Wakita H (1991) Secular variations in helium isotope ratios in an active volcano: eruption and plug hypothesis. Earth Planet Sci Lett 107:95–100

    Article  Google Scholar 

  • Shimizu A, Sumino H, Nagao K, Notsu K, Mitropoulos P (2005) Variation in noble gas isotopic composition of gas samples from the Aegean arc, Greece. J Volcanol Geotherm Res 140:321–339

    Article  Google Scholar 

  • Sigurdsson O (1985) Nisyros Geothermal Development, Nisyros NIS-1 Injection Tests July 1985. Consultant’s Report Public Power Corporation (PCC) Report No: OS-58084, Athens, Greece, 40 p. http://wwwosis/gogn/Skyrslur/OS-1985/OS-85084.pdf. Accessed 20 Sept 2015

    Google Scholar 

  • Sigurdsson O (1986) Nisyros Geothermal Development, Nisyros NIS-2, Production Characteristics and Fluid Composition Consultant’s Report. Public Power Corporation (PCC) Report No: OS-86038, Athens, Greece, 97 p. http://wwwosis/gogn/Skyrslur/OS-1986/OS-86038.pdf. Accessed 20 Sept 2015

    Google Scholar 

  • Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15

    Article  Google Scholar 

  • Stavrakakis G, Papoulia I (1998) Seismicity of Nisyros Newsl Eur Cent Prev Forecast Earthquakes 2:14–16

    Google Scholar 

  • Symonds RB, Rose WI, Bluth GJS, Gerlach Terence M (1994) Volcanic-gas studies: methods, results, and applications. Rev Mineral Geochem 30:1–66

    Google Scholar 

  • Symonds RB, Mizutani Y, Briggs PH (1996) Long-term geochemical surveillance of fumaroles at Showa-Shinzan dome, Usu volcano, Japan. J Volc Geoth Res 73:177–211

    Google Scholar 

  • Symonds RB, Gerlach TM, Reed MH (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geoth Res 108(1):303–341

    Article  Google Scholar 

  • Tibaldi A, Pasquarè FA, Papanikolaou D, Nomikou P (2008) Discovery of a huge sector collapse at the Nisyros volcano Greece by on-land and offshore geological-structural data. J Volcanol Geotherm Res 177:485–499

    Article  Google Scholar 

  • Werner C, Evans WC, Kelly PJ, McGimsey R, Pfeffer M, Doukas M, Neal C (2012) Deep magmatic degassing versus scrubbing: Elevated CO2 emissions and C/S in the lead-up to the 2009 eruption of Redoubt Volcano, Alaska. Geochem Geophys Geosyst 13(3)

    Google Scholar 

  • Zolotov MY, Shock EL (2000) A thermodynamic assessment of the potential synthesis of condensed hydrocarbons during cooling and dilution of volcanic gases. J Geophys Res: Solid Earth (1978–2012) 105(B1):539–559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Jörg Dietrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Dietrich, V.J., Chiodini, G., Schwandner, F.M. (2018). The Hydrothermal System and Geothermal Activity. In: Dietrich, V., Lagios, E. (eds) Nisyros Volcano. Active Volcanoes of the World. Springer, Cham. https://doi.org/10.1007/978-3-319-55460-0_5

Download citation

Publish with us

Policies and ethics