Skip to main content

Origin of Antiphospholipid Antibodies

  • Chapter
  • First Online:
Book cover Antiphospholipid Syndrome

Abstract

Antiphospholipid antibodies (aPL) are directed against phospholipid-binding proteins, such as β2-glycoprotein I (β2GPI), and may be either nonpathogenic or pathogenic. While low levels of aPL, particularly of the IgM subclass, can be found in apparently healthy individuals and may be protective, IgG aPL can be associated with pathogenicity. Infectious agents are among the main triggers for the production of anti-β2GPI. Other potential triggers include the intestinal microbiome and cell death. Innate immune activation is a common feature that likely serves as a second hit for aPL induction, whether from the initiating trigger itself or as a second stimulus. In a pro-inflammatory microenvironment, such as that triggered by infection, injury, or commensal microorganisms, and on the appropriate genetic background, pathogenic aPL may emerge. This chapter outlines the environmental and immune factors leading to aPL and antiphospholipid syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyakis S, Lockshin MD, Atsumi T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost JTH. 2006;4:295–306.

    Article  CAS  PubMed  Google Scholar 

  2. Hughes GRV, Harris EN, Gharavi AE. The anti-cardiolipin syndrome. J Rheumatol. 1986;13:486–9.

    CAS  PubMed  Google Scholar 

  3. Asherson RA, Cervera R, Piette JC, Shoenfeld Y. Milestones in the antiphospholipid syndrome. In: Asherson RA, Cervera R, Piette JC, Shoenfeld Y, editors. The antiphospholipid syndrome II – autoimmune thrombosis. Amsterdam: Elsevier; 2002.

    Google Scholar 

  4. Cervera R, Piette JC, Font J, Khamashta MA, et al. Antiphospholipid syndrome: clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum. 2002;46:1019–27.

    Article  PubMed  Google Scholar 

  5. Levine JS, Branch DW, Rauch J. The antiphospholipid syndrome. N Engl J Med. 2002;346:752–63.

    Article  CAS  PubMed  Google Scholar 

  6. Blank M, Waisman A, Mozes E, Koike T, Shoenfeld Y. Characteristics and pathogenic role of anti-beta2-glycoprotein I single-chain Fv domains: induction of experimental antiphospholipid syndrome. Int Immunol. 1999;11:1917–26.

    Article  CAS  PubMed  Google Scholar 

  7. Blank M, Krause I, Fridkin M, et al. Bacterial induction of autoantibodies to beta2-glycoprotein-I accounts for the infectious etiology of antiphospholipid syndrome. J Clin Invest. 2002;109:797–804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shoenfeld Y. Etiology and pathogenetic mechanisms of the anti-phospholipid syndrome unraveled. Trends Immunol. 2003;24:2–4.

    Article  CAS  PubMed  Google Scholar 

  9. Gharavi AE, Pierangeli SS, Espinola RG, Liu X, Colden-Stanfield M, Harris EN. Antiphospholipid antibodies induced in mice by immunization with a cytomegalovirus-derived peptide cause thrombosis and activation of endothelial cells in vivo. Arthritis Rheum. 2002;46:545–52.

    Article  CAS  PubMed  Google Scholar 

  10. Cruz-Tapias P, Blank M, Anaya JM, Shoenfeld Y. Infections and vaccines in the etiology of antiphospholipid syndrome. Curr Opin Rheumatol. 2012;24:389–93.

    Article  CAS  PubMed  Google Scholar 

  11. Mehrani T, Petri M. IgM anti-beta2 glycoprotein I is protective against lupus nephritis and renal damage in systemic lupus erythematosus. J Rheumatol. 2011;38:450–3.

    Article  PubMed  Google Scholar 

  12. de Mast Q, Molhoek JE, van der Ven AJ, et al. Antiphospholipid antibodies and the risk of stroke in urban and rural Tanzania: a community-based case-control study. Stroke. 2016;47:2589–95.

    Google Scholar 

  13. Cervera R, Asherson RA, Acevedo ML, et al. Antiphospholipid syndrome triggered by infections: a report of two cases and a review of clinical presentations in 100 patients. Ann Rheum Dis. 2004;63:1312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. de Groot PG, Urbanus RT. The significance of autoantibodies against β2-glycoprotein I. Blood. 2012;120:266–74.

    Article  PubMed  CAS  Google Scholar 

  15. Durkin ML, Marchese D, Robinson MD, Ramgopal M. Catastrophic antiphospholipid syndrome (CAPS) induced by influenza A virus subtype H1N1. BMJ Case Rep. 2013;pii: bcr2013200474.

    Google Scholar 

  16. Asherson RA. The catastrophic antiphospholipid syndrome. J Rheumatol. 1992;19:508–12.

    CAS  PubMed  Google Scholar 

  17. Asherson R, Cervera R, de Groot PG, et al. Catastrophic antiphospholipid syndrome: international consensus statement criteria and treatment guidelines. Lupus. 2003;12:530–4.

    Article  CAS  PubMed  Google Scholar 

  18. Rodríguez-Pintó I, Moitinho M, Santacreu I, et al. Catastrophic antiphospholipid syndrome (CAPS): descriptive analysis of 500 patients from the international CAPS registry. Autoimmun Rev. 2016;15:1120–4.

    Article  PubMed  CAS  Google Scholar 

  19. Berman H, Rodríguez-Pintó I, Cervera R, et al. Pediatric catastrophic antiphospholipid syndrome: descriptive analysis of 45 patients from the “CAPS registry”. Autoimmun Rev. 2014;13:157–62.

    Article  PubMed  Google Scholar 

  20. Rojas-Rodriguez J, Garcia-Carrasco M, Ramos-Casals M, et al. Catastrophic antiphospholipid syndrome: clinical description and triggering factors in 8 patients. J Rheumatol. 2000;27:238–40.

    CAS  PubMed  Google Scholar 

  21. Blank M, Shoenfeld Y, Cabilli S, Heldman Y, Fridkin M, Katchalski-Katzir E. Prevention of experimental antiphospholipid syndrome and endothelial cell activation by synthetic peptides. Proc Natl Acad Sci. 1999;96:5164–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blank M, Shoenfeld Y. Beta-2-glycoprotein-I, infections, antiphospholipid syndrome and therapeutic considerations. Clin Immunol. 2004;112:190–9.

    Article  CAS  PubMed  Google Scholar 

  23. Gharavi EE, Chaimovich H, Cucurull E, et al. Induction of antiphospholipid antibodies by immunization with synthetic viral and bacterial peptides. Lupus. 1999;8:449–55.

    Article  CAS  PubMed  Google Scholar 

  24. Pierangeli SS, Blank M, Liu X, et al. A peptide that shares similarity with bacterial antigens reverses thrombogenic properties of antiphospholipid antibodies in vivo. J Autoimmun. 2004;22:217–25.

    Article  CAS  PubMed  Google Scholar 

  25. Ağar Ç, de Groot PG, Marquart JA, Meijers JC. Evolutionary conservation of the lipopolysaccharide binding site of β2-glycoprotein I. Thromb Haemost. 2011;106:1069–75.

    Google Scholar 

  26. Laplante P, Amireault P, Subang R, Dieudé M, Levine JS, Rauch J. Interaction of β2-glycoprotein I with lipopolysaccharide leads to toll-like receptor 4 (TLR4)-dependent activation of macrophages. J Biol Chem. 2011;286:42494–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pierangeli SS, Vega-Ostertag ME, Raschi E, et al. Toll-like receptor and antiphospholipid mediated thrombosis: in vivo studies. Ann Rheum Dis. 2007;66:1327–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Britton WJ, Lockwood DN. Leprosy. Lancet. 2004;363:1209–19.

    Article  PubMed  Google Scholar 

  29. Ridley DS, Jopling WH. Classification of leprosy according to immunity: a five-group system. Int J Lepr Other Mycobact Dis. 1966;34:255–73.

    CAS  PubMed  Google Scholar 

  30. Walker SL, Lockwood DN. Leprosy type 1 (reversal) reactions and their management. Lepr Rev. 2008;79:372–86.

    PubMed  Google Scholar 

  31. Kahawita IP, Lockwood DN. Towards understanding the pathology of erythema nodosum leprosum. Trans R Soc Trop Med Hyg. 2008;102:329–37.

    Article  CAS  PubMed  Google Scholar 

  32. Ribeiro SL, Pereira HL, Silva NP, Souza AW, Sato EI. Anti-beta2-glycoprotein I antibodies are highly prevalent in a large number of Brazilian leprosy patients. Acta Reumatol Port. 2011;36:30–7.

    CAS  PubMed  Google Scholar 

  33. Ribeiro SL, Pereira HL, Silva NP, Sato EI, Passos LF, Dos-Santos MC. Long-term persistence of anti-beta2 glycoprotein I in treated leprosy patients. Lupus. 2014;23:1249–51.

    Article  CAS  PubMed  Google Scholar 

  34. de Larranaga GF, Forastiero RR, Martinuzzo ME, et al. High prevalence of antiphospholipid antibodies in leprosy: evaluation of antigen reactivity. Lupus. 2000;9:594–600.

    Article  PubMed  Google Scholar 

  35. Martinuzzo ME, de Larranaga GF, Forastiero RR, et al. Markers of platelet, endothelial cell and blood coagulation activation in leprosy patients with antiphospholipid antibodies. Clin Exp Rheumatol. 2002;20:477–83.

    CAS  PubMed  Google Scholar 

  36. Elbeialy A, Strassburger-Lorna K, Atsumi T, et al. Antiphospholipid antibodies in leprotic patients: a correlation with disease manifestations. Clin Exp Rheumatol. 2000;18:492–4.

    CAS  PubMed  Google Scholar 

  37. Baeza I, Wong-Baeza C, Valerdi E, et al. Lepromatous leprosy patients produce antibodies that recognise non-bilayer lipid arrangements containing mycolic acids. Mem Inst Oswaldo Cruz. 2012;107(Suppl 1):95–103.

    Article  CAS  PubMed  Google Scholar 

  38. Karadeniz A, Lally L, Magro C, Levy R, Erkan D, Lockshin MD. Lepromatous leprosy mimicking systemic lupus erythematosus: a clinical pathology conference held by the division of rheumatology at hospital for special surgery. HSS J. 2014;10:286–91.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Teixeira Junior GJ, Silva CE, Magalhaes V. Application of the diagnostic criteria for systemic lupus erythematosus to patients with multibacillary leprosy. Rev Soc Bras Med Trop. 2011;44:85–90.

    Article  PubMed  Google Scholar 

  40. Brochado MJ, Figueiredo JF, Mendes-Junior CT, Louzada-Junior P, Kim OM, Roselino AM. Correlation between beta-2-glycoprotein I gene polymorphism and anti-beta-2 glycoprotein I antibodies in patients with multibacillary leprosy. Arch Dermatol Res. 2010;302:583–91.

    Article  CAS  PubMed  Google Scholar 

  41. Akerkar SM, Bichile LS. Leprosy & gangrene: a rare association; role of antiphospholipid antibodies. BMC Infect Dis. 2005;5:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hebe Petiti-Martin G, Villar-Buill M, de la Hera I, et al. Deep vein thrombosis in a patient with lepromatous leprosy receiving thalidomide to treat leprosy reaction. Actas Dermosifiliogr. 2013;104:67–70.

    Article  CAS  PubMed  Google Scholar 

  43. Vetrichevvel TP, Pise GA, Thappa DM. A case report of venous thrombosis in a leprosy patient treated with corticosteroid and thalidomide. Lepr Rev. 2008;79:193–5.

    PubMed  Google Scholar 

  44. Yamaguchi S, Yamamoto Y, Hosokawa A, Hagiwara K, Uezato H, Takahashi K. Deep venous thrombosis and pulmonary embolism secondary to co-administration of thalidomide and oral corticosteroid in a patient with leprosy. J Dermatol. 2012;39:711–4.

    Article  CAS  PubMed  Google Scholar 

  45. Sharma NL, Sharma V, Shanker V, Mahajan VK, Sarin S. Deep vein thrombosis: a rare complication of thalidomide therapy in recurrent erythema nodosum leprosum. Int J Lepr Other Mycobact Dis. 2004;72:483–5.

    Article  PubMed  Google Scholar 

  46. Fabi SG, Hill C, Witherspoon JN, Boone SL, West DP. Frequency of thromboembolic events associated with thalidomide in the non-cancer setting: a case report and review of the literature. J Drugs Dermatol. 2009;8:765–9.

    PubMed  Google Scholar 

  47. Nunzie E, Ortega Cabrera LV, Macanchi Moncayo FM, Ortega Espinosa PF, Clapasson A, Massone C. Lucio leprosy with Lucio's phenomenon, digital gangrene and anticardiolipin antibodies. Lepr Rev. 2014;85:194–200.

    PubMed  Google Scholar 

  48. Guedes-Barbosa LS, Batista EV, Martins DC, Neder L, Crepaldi N, Martins EV. Necrotizing cutaneous vasculitis in multibacillary leprosy disease (Lucio's phenomenon). J Clin Rheumatol. 2008;14:57–9.

    Article  PubMed  Google Scholar 

  49. Curi PF, Villaroel JS, Migliore N, et al. Lucio's phenomenon: report of five cases. Clin Rheumatol. 2016;35:1397–401.

    Article  PubMed  Google Scholar 

  50. Rea TH, Jerskey RS. Clinical and histologic variations among thirty patients with Lucio’s phenomenon and pure and primitive diffuse lepromatosis (Latapi's lepromatosis). Int J Lepr Other Mycobact Dis. 2005;73:169–88.

    PubMed  Google Scholar 

  51. Levy RA, de Meis E, Pierangeli S. An adapted ELISA method for differentiating pathogenic from nonpathogenic aPL by a beta 2 glycoprotein I dependency anticardiolipin assay. Thromb Res. 2004;114:573–7.

    Article  CAS  PubMed  Google Scholar 

  52. Forastiero R, Martinuzzo M, de Larranaga G, Vega-Ostertag M, Pierangeli S. Anti-beta2glycoprotein I antibodies from leprosy patients do not show thrombogenic effects in an in vivo animal model. J Thromb Haemost. 2011;9:859–61.

    Article  CAS  PubMed  Google Scholar 

  53. Arvieux J, Renaudineau Y, Mane I, Perraut R, Krilis SA, Youinou P. Distinguishing features of anti-beta2 glycoprotein I antibodies between patients with leprosy and the antiphospholipid syndrome. Thromb Haemost. 2002;87:599–605.

    CAS  PubMed  Google Scholar 

  54. Swadzba J, Sanak M, Iwaniec T, Dziedzina S, Musial J. Valine/Leucine247 polymorphism of beta2-glycoprotein I in patients with antiphospholipid syndrome: lack of association with anti-beta2-glycoprotein I antibodies. Lupus. 2006;15:218–22.

    Article  CAS  PubMed  Google Scholar 

  55. Morshed MG, Singh AE. Recent trends in the serologic diagnosis of syphilis. Clin Vaccine Immunol. 2015;22:137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Loizou S, Singh S, Wypkema E, Asherson RA. Anticardiolipin, anti-beta(2)-glycoprotein I and antiprothrombin antibodies in black South African patients with infectious disease. Ann Rheum Dis. 2003;62:1106–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Santiago M, Martinelli R, Ko A, et al. Anti-beta2 glycoprotein I and anticardiolipin antibodies in leptospirosis, syphilis and Kala-azar. Clin Exp Rheumatol. 2001;19:425–30.

    CAS  PubMed  Google Scholar 

  58. Guerin J, Casey E, Feighery C, Jackson J. Anti-Beta 2-glycoprotein I antibody isotype and IgG subclass in antiphospholipid syndrome patients. Autoimmunity. 1999;31:109–16.

    Article  CAS  PubMed  Google Scholar 

  59. Pierangeli SS, Goldsmith GH, Krnic S, Harris EN. Differences in functional activity of anticardiolipin antibodies from patients with syphilis and those with antiphospholipid syndrome. Infect Immun. 1994;62:4081–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Matsuura E, Igarashi Y, Fujimoto M, Ichikawa K, Koike T. Anticardiolipin cofactor(s) and differential diagnosis of autoimmune disease [letter]. Lancet. 1990;336:177–8.

    Article  CAS  PubMed  Google Scholar 

  61. Hunt JE, McNeil HP, Morgan GJ, Cramer IR, Krilis SA. A phospholipid β2-glycoprotein 1 complex is an antigen for anticardiolipin antibodies occurring in autoimmune disease but not with infection. Lupus. 1992;1:75–81.

    Article  CAS  PubMed  Google Scholar 

  62. Asherson RA, Cervera R. Antiphospholipid antibodies and infections. Ann Rheum Dis. 2003;62:388–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Metzger J, von Landenberg P, Kehrel M, Buhl A, Lackner KJ, Luppa PB. Biosensor analysis of beta2-glycoprotein I-reactive autoantibodies: evidence for isotype-specific binding and differentiation of pathogenic from infection-induced antibodies. Clin Chem. 2007;53:1137–43.

    Article  CAS  PubMed  Google Scholar 

  64. Ruff WE, Vieira SM, Kriegel MA. The role of the gut microbiota in the pathogenesis of antiphospholipid syndrome. Curr Rheumatol Rep. 2015;17:472.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13:260–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Duerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity. 2009;31:368–76.

    Article  CAS  PubMed  Google Scholar 

  67. Ruff WE, Kriegel MA. Autoimmune host-microbiota interactions at barrier sites and beyond. Trends Mol Med. 2015;21:233–44.

    Article  CAS  PubMed  Google Scholar 

  68. Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139:485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of clostridia strains from the human microbiota. Nature. 2013;500:232–6.

    Article  CAS  PubMed  Google Scholar 

  70. Craft JE. Follicular helper T cells in immunity and systemic autoimmunity. Nat Rev Rheumatol. 2012;8:337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kubinak JL, Petersen C, Stephens WZ, et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe. 2015;17:153–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wesemann DR, Portuguese AJ, Meyers RM, et al. Microbial colonization influences early B-lineage development in the gut lamina propria. Nature. 2013;501:112–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kriegel MA. Self or non-self? The multifaceted role of the microbiota in immune-mediated diseases. Clin Immunol. 2015;159:119–21.

    Article  CAS  PubMed  Google Scholar 

  74. Aguiar CL, Ruff W, Goodman A, Erkan D, Kriegel MA. Longitudinal human gut microbial community profiling in antiphospholipid syndrome reveals enrichment of a cardiolipin-producing taxon. Lupus. 2016;25:9 [abstract].

    Google Scholar 

  75. Taurog JD, Richardson JA, Croft JT, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–64.

    Article  CAS  PubMed  Google Scholar 

  76. Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N Engl J Med. 2002;347:911–20.

    Article  PubMed  Google Scholar 

  77. Wen L, Ley RE, Volchkov PY, et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature. 2008;455:1109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tiniakou E, Costenbader KH, Kriegel MA. Sex-specific environmental influences on the development of autoimmune diseases. Clin Immunol. 2013;149:182–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Faith JJ, McNulty NP, Rey FE, Gordon JI. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science. 2011;333:101–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med. 2009;1:6ra14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Vieira SM, Pagovich OE, Kriegel MA. Diet, microbiota and autoimmune diseases. Lupus. 2014;23:518–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vieira SM, Yu A, Pagovich OE, Tiniakou E, Sterpka JA, Kriegel MA. Depletion of the gut microbiota prevents beta2-glycoprotein I antibody production and mortality in a model of antiphospholipid syndrome. Arthritis Rheum. 2013;65 Suppl 10:556.

    Google Scholar 

  83. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179:1317–30.

    Article  CAS  PubMed  Google Scholar 

  84. Casciola-Rosen LA, Miller DK, Anhalt GJ, Rosen A. Specific cleavage of the 70 kDa protein component of the U1 small nuclear riboprotein is a characteristic biochemical feature of apoptotic cell death. J Biol Chem. 1994;269:30757–60.

    CAS  PubMed  Google Scholar 

  85. Casciola-Rosen LA, Andrade F, Ulanet D, Bang Wong W, Rosen A. Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med. 1999;190:815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Utz PJ, Hottelet M, Schur PH, Anderson P. Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J Exp Med. 1997;185:843–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rudel T, Bokoch GM. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science. 1997;276:1571–4.

    Article  CAS  PubMed  Google Scholar 

  88. van Engeland M, Kuijpers HJH, Ramaekers FCA, Reutelingsperger CPM, Schutte B. Plasma membrane alterations and cytoskeletal changes in apoptosis. Exp Cell Res. 1997;235:421–30.

    Article  PubMed  Google Scholar 

  89. Sorice M, Circella A, Misasi R, et al. Cardiolipin on the surface of apoptotic cells as a possible trigger for anti-phospholipid antibodies. Clin Exp Immunol. 2000;122:277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Price BE, Rauch J, Shia MA, et al. Anti-phospholipid autoantibodies bind to apoptotic, but not viable, thymocytes in a β2-glycoprotein manner. J Immunol. 1996;157:2201–8.

    CAS  PubMed  Google Scholar 

  91. D’Agnillo P, Levine JS, Subang R, Rauch J. Prothrombin binds to the surface of apoptotic, but not viable, cells and serves as a target of lupus anticoagulant autoantibodies. J Immunol. 2003;170:3408–22.

    Article  PubMed  Google Scholar 

  92. Levine JS, Subang R, Koh JS, Rauch J. Induction of antiphospholipid autoantibodies by β2-glycoprotein I bound to apoptotic thymocytes. J Autoimmun. 1998;11:413–24.

    Article  CAS  PubMed  Google Scholar 

  93. Levine JS, Subang R, Nasr SH, et al. Immunization with an apoptotic cell-binding protein recapitulates the nephritis and sequential autoantibody emergence of systemic lupus erythematosus. J Immunol. 2006;177:6504–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Salem D, Subang R, Okazaki Y, et al. β2-glycoprotein I-specific T cells are associated with epitope spread to lupus-related autoantibodies. J Biol Chem. 2015;290:5543–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Barnado A, Crofford LJ, Oates JC. At the bedside: neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol. 2016;99:265–78.

    Article  CAS  PubMed  Google Scholar 

  96. Yalavarthi S, Gould TJ, Rao AN, et al. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheum. 2015;67:2990–3003.

    Article  CAS  Google Scholar 

  97. Grayson PC, Kaplan MJ. At the bench: neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J Leukoc Biol. 2016;99:253–64.

    Article  CAS  PubMed  Google Scholar 

  98. Gharavi AE, Pierangeli SS, Harris EN. Origin of antiphospholipid antibodies. Rheum Dis Clin N Am. 2001;27:551–63.

    Article  CAS  Google Scholar 

  99. Gharavi AE, Sammaritano LR, Wen J, Elkon KB. Induction of antiphospholipid autoantibodies by immunization with beta 2 glycoprotein I (apolipoprotein H). J Clin Invest. 1992;90:1105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. McNeil HP, Simpson RJ, Chesterman CN, Krilis SA. Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A. 1990;87:4120–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Galli M, Comfurius P, Maassen C, et al. Anticardiolipin antibodies (ACA) directed not to cardiolipin but to a plasma protein cofactor. Lancet. 1990;335:1544–7.

    Article  CAS  PubMed  Google Scholar 

  102. Subang R, Levine JS, Janoff AS, et al. Phospholipid-bound β2-glycoprotein I induces the production of anti-phospholipid antibodies. J Autoimmun. 2000;15:21–32.

    Article  CAS  PubMed  Google Scholar 

  103. de Laat B, van Berkel M, Urbanus RT, et al. Immune responses against domain I of β2-glycoprotein I are driven by conformational changes: domain I of β2-glycoprotein I harbors a cryptic immunogenic epitope. Arthritis Rheum. 2011;63:3960–8.

    Article  PubMed  CAS  Google Scholar 

  104. El-Assaad F, Krilis SA, Giannakopoulos B. Posttranslational forms of beta 2-glycoprotein I in the pathogenesis of the antiphospholipid syndrome. Thromb J. 2016;14 Suppl 1:20.

    Article  Google Scholar 

  105. Ioannou Y, Zhang JY, Qi M, et al. Novel assays of thrombogenic pathogenicity in the antiphospholipid syndrome based on the detection of molecular oxidative modification of the major autoantigen beta2-glycoprotein I. Arthritis Rheum. 2011;63:2774–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Buttari B, Profumo E, Mattei V, et al. Oxidized beta2-glycoprotein I induces human dendritic cell maturation and promotes a T helper type 1 response. Blood. 2005;106:3880–7.

    Article  CAS  PubMed  Google Scholar 

  107. van de Berg PJ, Heutinck KM, Raabe R, et al. Human cytomegalovirus induces systemic immune activation characterized by a type 1 cytokine signature. J Infect Dis. 2010;202:690–9.

    Article  PubMed  CAS  Google Scholar 

  108. Prandota J. Possible pathomechanism of autoimmune hepatitis. Am J Ther. 2003;10:51–7.

    Article  PubMed  Google Scholar 

  109. Nakagawa K, Harrison LC. The potential roles of endogenous retroviruses in autoimmunity. Immunol Rev. 1996;152:193–236.

    Article  CAS  PubMed  Google Scholar 

  110. Passam FH, Giannakopoulos B, Mirarabshahi P, Krilis SA. Molecular pathophysiology of the antiphospholipid syndrome: the role of oxidative post-translational modification of beta 2 glycoprotein I. J Thromb Haemost JTH. 2011;9(Suppl 1):275–82.

    Article  CAS  PubMed  Google Scholar 

  111. Rauch J, Dieude M, Subang R, Levine JS. The dual role of innate immunity in the antiphospholipid syndrome. Lupus. 2010;19:347–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Salem D, Subang R, Laplante P, Levine JS, Rauch J. The dual role of innate immunity in antiphospholipid syndrome and systemic lupus erythematosus. Lupus. 2014;23:1327–31.

    Article  CAS  PubMed  Google Scholar 

  113. Aguilar-Valenzuela R, Nickerson K, Romay-Penabad Z, et al. Involvement of TLR7 and TLR9 in the production of antiphospholipid antibodies. Arthritis Rheum. 2011;63:s281.

    Google Scholar 

  114. Xiao J, Zhu F, Liu X, Xiong J. Th1/Th2/Th17/Treg expression in cultured PBMCs with antiphospholipid antibodies. Mol Med Rep. 2012;6:1035–9.

    CAS  PubMed  Google Scholar 

  115. Dal Ben ER, do Prado CH, Baptista TS, Bauer ME, Staub HL. Decreased levels of circulating CD4+CD25+Foxp3+ regulatory T cells in patients with primary antiphospholipid syndrome. J Clin Immunol. 2013;33:876–9.

    Google Scholar 

  116. Merrill JT. Do antiphospholipid antibodies develop for a purpose? Curr Rheumatol Rep. 2006;8:109–13.

    Article  CAS  PubMed  Google Scholar 

  117. Jordo ED, Wermeling F, Chen Y, Karlsson MC. Scavenger receptors as regulators of natural antibody responses and B cell activation in autoimmunity. Mol Immunol. 2011;48:1307–18.

    Article  PubMed  CAS  Google Scholar 

  118. von Landenberg P, Doring Y, Modrow S, Lackner KJ. Are antiphospholipid antibodies an essential requirement for an effective immune response to infections? Ann N Y Acad Sci. 2007;1108:578–83.

    Article  CAS  Google Scholar 

  119. Kra-Oz Z, Lorber M, Shoenfeld Y, Scharff Y. Inhibitor(s) of natural anti-cardiolipin autoantibodies. Clin Exp Immunol. 1993;93:265–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lieby P, Soley A, Knapp AM, et al. Memory B cells producing somatically mutated antiphospholipid antibodies are present in healthy individuals. Blood. 2003;102:2459–65.

    Article  CAS  PubMed  Google Scholar 

  121. Fleming SD, Egan RP, Chai C, et al. Anti-phospholipid antibodies restore mesenteric ischemia/reperfusion-induced injury in complement receptor 2/complement receptor 1-deficient mice. J Immunol. 2004;173:7055–61.

    Article  CAS  PubMed  Google Scholar 

  122. Fleming SD, Pope MR, Hoffman SM, et al. Domain V peptides inhibit beta2-glycoprotein I-mediated mesenteric ischemia/reperfusion-induced tissue damage and inflammation. J Immunol. 2010;185:6168–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McIntyre JA, Wagenknecht DR. Antiphospholipid antibodies and renal transplantation: a risk assessment. Lupus. 2003;12:555–9.

    Article  CAS  PubMed  Google Scholar 

  124. Balasubramanian K, Schroit AJ. Characterization of phosphatidylserine-dependent beta2-glycoprotein I macrophage interactions. Implications for apoptotic cell clearance by phagocytes. J Biol Chem. 1998;273:29272–7.

    Article  CAS  PubMed  Google Scholar 

  125. Shi W, Krilis SA, Chong BH, Gordon S, Chesterman CN. Prevalence of lupus anticoagulant and anticardiolipin antibodies in a healthy population. Aust NZ J Med. 1990;20:231–6.

    Article  CAS  Google Scholar 

  126. Cheng HM, Chamley L. Cryptic natural autoantibodies and co-potentiators. Autoimmun Rev. 2008;7:431–4.

    Article  CAS  PubMed  Google Scholar 

  127. McIntyre JA, Wagenknecht DR, Faulk WP. Redox-reactive autoantibodies: detection and physiological relevance. Autoimmun Rev. 2006;5:76–83.

    Article  CAS  PubMed  Google Scholar 

  128. Hasselaar P, Triplett DA, LaRue A, et al. Heat treatment of serum and plasma induces false positive results in the antiphospholipid antibody ELISA. J Rheumatol. 1990;17:186–91.

    CAS  PubMed  Google Scholar 

  129. Alm RA, Ling LSL, Moir DT, et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen helicobacter pylori. Nature. 1999;397:176–80.

    Article  PubMed  CAS  Google Scholar 

  130. Sorice M, Pittoni V, Griggi T, et al. Specificity of anti-phospholipid antibodies in infectious mononucleosis: a role for anti-cofactor protein antibodies. Clin Exp Immunol. 2000;120:301–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cicconi V, Carloni E, Franceschi F, et al. Disappearance of antiphospholipid antibodies syndrome after helicobacter pylori eradication. Am J Med. 2001;111:163–4.

    Article  CAS  PubMed  Google Scholar 

  132. Eslick GD, Yan P, Xia HH, Murray H, Spurrett B, Talley NJ. Foetal intrauterine growth restrictions with helicobacter pylori infection. Aliment Pharmacol Ther. 2002;16:1677–82.

    Article  CAS  PubMed  Google Scholar 

  133. Guilherme L, Kalil J, Cunningham M. Molecular mimicry in the autoimmune pathogenesis of rheumatic heart disease. Autoimmunity. 2006;39:31–9.

    Google Scholar 

  134. Lev S, Shoenfeld Y. Cardiac valvulopathy in the antiphospholipid syndrome. Clin Rev Allergy Immunol. 2002;23:341–8.

    Article  PubMed  Google Scholar 

  135. Guidelines for the diagnosis of rheumatic fever. Jones Criteria, 1992 update. Special Writing Group of the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease of the Council on Cardiovascular Disease in the Young of the American Heart Association. JAMA. 1992;268:2069–73.

    Google Scholar 

  136. Chapman J, Rand JH, Brey RL, et al. Non-stroke neurological syndromes associated with antiphospholipid antibodies: evaluation of clinical and experimental studies. Lupus. 2003;12:514–7.

    Article  CAS  PubMed  Google Scholar 

  137. Blank M, Krause I, Magrini L, et al. Overlapping humoral autoimmunity links rheumatic fever and the antiphospholipid syndrome. Rheumatology (Oxford). 2006;45:833–41.

    Article  CAS  Google Scholar 

  138. Kim W, Ruff W, Yu A, et al. IgA-Seq profiling of the gut microbiota in human antiphospholipid syndrome. Proceedings of the 13th cytokines & inflammation conference, San Diego, United States 2015 [abstract].

    Google Scholar 

  139. Hand TW, Dos Santos LM, Bouladoux N, et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science. 2012;337:1553–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ruff W, Dehner C, Roth A, et al. Autoantigen-specific T cell and antibody reactivity to a human gut commensal in antiphospholipid syndrome. Arthritis Rheumatol. 2016;68(Suppl 10): [abstract].

    Google Scholar 

  141. Palm NW, de Zoete MR, Cullen TW, et al. Immunoglobulin a coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014;158:1000–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Martin E, Winn R, Nugent K. Catastrophic antiphospholipid syndrome in a community-acquired methicillin-resistant Staphylococcus aureus infection: a review of pathogenesis with a case for molecular mimicry. Autoimmun Rev. 2011;10:181–8.

    Article  CAS  PubMed  Google Scholar 

  143. Garcia-Carrasco M, Mendoza-Pinto C, Macias-Diaz S, et al. The role of infectious diseases in the catastrophic antiphospholipid syndrome. Autoimmune Rev. 2015;14:1066–71.

    Article  CAS  Google Scholar 

  144. Yoo JH, Min JK, Kwon SS, Jeong CH, Shin WS. Symmetrical peripheral gangrene complicating Klebsiella pneumoniae sepsis associated with antiphospholipid antibodies. Ann Rheum Dis. 2004;63:459–60.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Blank M, Asherson RA, Cervera R, Shoenfeld Y. Antiphospholipid syndrome infectious origin. J Clin Immunol. 2004;24:12–23.

    Article  CAS  PubMed  Google Scholar 

  146. Yamazaki M, Asakura H, Kawamura Y, Ohka T, Endo M, Matsuda T. Transient lupus anticoagulant induced by Epstein-Barr virus infection. Blood Coagul Fibrinolysis. 1991;2:771–4.

    Article  CAS  PubMed  Google Scholar 

  147. von Landenberg P, Lehmann HW, Modrow S. Human parvovirus B19 infection and antiphospholipid antibodies. Autoimmun Rev. 2007;6:278–85.

    Article  CAS  Google Scholar 

  148. Uhtman IW, Gharavi AE. Viral infections and antiphospholipid antibodies. Semin Arthritis Rheum. 2002;31:256–63.

    Article  Google Scholar 

  149. Kida Y, Maeshima E, Yamada Y. Portal vein thrombosis in a patient with hepatitis C virus-related cirrhosis complicated with antiphospholipid syndrome. Rheumatol Int. 2009;29:1495–8.

    Article  PubMed  Google Scholar 

  150. Catoggio C, Alvarez-Uría A, Fernandez PL, Cervera R, Espinosa G. Catastrophic antiphospholipid syndrome triggered by fulminant disseminated herpes simplex infection in a patient with systemic lupus erythematosus. Lupus. 2012;21:1359–61.

    Article  CAS  PubMed  Google Scholar 

  151. Levine J, Subang R, Setty S, et al. Phospholipid-binding proteins differ in their capacity to induce autoantibodies and murine systemic lupus erythematosus. Lupus. 2014;23:752–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to David Salem for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joyce Rauch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rauch, J. et al. (2017). Origin of Antiphospholipid Antibodies. In: Erkan, D., Lockshin, M. (eds) Antiphospholipid Syndrome. Springer, Cham. https://doi.org/10.1007/978-3-319-55442-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55442-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55440-2

  • Online ISBN: 978-3-319-55442-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics