Skip to main content

Theory and Numerical Modelling of Parity-Time Symmetric Structures in Photonics: Boundary Integral Equation for Coupled Microresonator Structures

  • Chapter
  • First Online:
Recent Trends in Computational Photonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 204))

Abstract

The spectral behaviour and the real-time operation of Parity-Time (\(\mathcal {PT}\)) symmetric coupled resonators are investigated. A Boundary Integral Equation (BIE) model is developed to study these structures in the frequency domain. The impact of realistic gain/loss material properties on the operation of the \(\mathcal {PT}\)-symmetric coupled resonators is also investigated using the time-domain Transmission-Line Modelling (TLM) method. The BIE method is also used to study the behaviour of an array of PT-microresonator photonic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This discretisation parameter is equivalent with \(\lambda _\text {sim}/100\), where \(\lambda _\text {sim}\) is the maximum simulation bandwidth in material, i.e. \(\lambda _\text {sim}=0.875\,\upmu \text {m}/3.5\).

  2. 2.

    http://ab-initio.mit.edu/wiki/index.php/Harminv.

References

  1. J. Paul, C. Christopoulos, D. Thomas, Time-domain modelling of negative refractive index material. Electron. Lett. 37(14), 1 (2001)

    Article  Google Scholar 

  2. J. Paul, Modelling of general electromagnetic material properties in TLM. Ph.D. thesis, University of Nottingham, 1998

    Google Scholar 

  3. J. Paul, C. Christopoulos, D. Thomas, Generalized material models in TLM - part II: materials with anisotropic properties. IEEE Trans. Antennas Propag. 47(10), 1528 (1999)

    Article  ADS  Google Scholar 

  4. J. Paul, C. Christopoulos, D. Thomas, Generalized material models in TLM - part I: materials with frequency-dependent properties. IEEE Trans. Antennas Propag. 47(10), 1528 (1999)

    Article  ADS  Google Scholar 

  5. J. Paul, C. Christopoulos, D. Thomas, Generalized material models in TLM - part III: materials with nonlinear properties. IEEE Trans. Antennas Propag. 50(7), 997 (2002)

    Article  ADS  Google Scholar 

  6. C. Christopoulos, The Transmission-Line Modeling Method TLM (IEEE Press, Piscataway, 1995)

    Book  Google Scholar 

  7. V. Janyani, Modelling of dispersive and nonlinear materials for optoelectronics using TLM. Ph.D. thesis, University of Nottingham, 2005

    Google Scholar 

  8. C.A. Balanis, Advanced Engineering Electromagnetics: Traditions v. 2, 2nd edn. (Wiley, New Jersey, 2012)

    Google Scholar 

  9. S.C. Creagh, M.D. Finn, Evanescent coupling between discs: a model for near-integrable tunnelling. J. Phys. A Math. Gen. 34(18), 3791 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. S.V. Boriskina, Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides. Opt. Express 15(25), 17371 (2007)

    Article  ADS  Google Scholar 

  11. S.V. Boriskina, Spectrally-engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis. J. Opt. Soc. Am. B 15(8), 14 (2006)

    Google Scholar 

  12. S.V. Boriskina, Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. Opt. Lett. 32(11), 1557 (2007)

    Article  ADS  Google Scholar 

  13. E. Smotrova, A. Nosich, T. Benson, P. Sewell, Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing. IEEE J. Sel. Top. Quantum Electron. 12(1), 78 (2006)

    Article  Google Scholar 

  14. E.I. Smotrova, T.M. Benson, P. Sewell, J. Ctyroky, A.I. Nosich, Lasing frequencies and thresholds of the dipole supermodes in an active microdisk concentrically coupled with a passive microring. J. Opt. Soc. Am. A 25(11), 2884 (2008)

    Article  ADS  Google Scholar 

  15. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (U.S. Department of Commerce, NIST, Dover, 1972)

    MATH  Google Scholar 

  16. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, Part I (McGraw-Hill, New York, 1953)

    MATH  Google Scholar 

  17. S. Phang, A. Vukovic, S.C. Creagh, T.M. Benson, P.D. Sewell, G. Gradoni, Parity-time symmetric coupled microresonators with a dispersive gain/loss. Opt. Express 23(9), 11493 (2015)

    Article  ADS  Google Scholar 

  18. S. Phang, Theory and numerical modelling of parity-time symmetric structures for photonics. Ph.D. thesis, University of Nottingham, 2016

    Google Scholar 

  19. S.C. Hagness, R.M. Joseph, A. Taflove, Subpicosecond electrodynamics of distributed Bragg reflector microlasers: results from finite difference time domain simulations. Radio Sci. 31(4), 931 (1996)

    Article  ADS  Google Scholar 

  20. F. Grossmann, V.A. Mandelshtam, H.S. Taylor, J.S. Briggs, Harmonic inversion of time signals and its applications. J. Chem. Phys. 107, 6756 (1997)

    Article  Google Scholar 

  21. V.A. Mandelshtam, H.S. Taylor, Erratum: Harmonic inversion of time signals and its applications [J. Chem. Phys. 107, 6756 (1997)]. J. Chem. Phys. 109, 4128 (1998)

    Google Scholar 

  22. S.G. Johnson, Harminv (2015), http://ab-initio.mit.edu/wiki/index.php/Harminv

  23. A. Vukovic, P. Sewell, T.M. Benson, H.G. Dantanarayana, Resonant frequency and Q factor extraction from temporal responses of ultra-high Q optical resonators. IET Sci. Meas. Technol. 8(4) (2014)

    Google Scholar 

  24. B. Peng, S.K. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C.M. Bender, F. Nori, L. Yang, Loss-induced suppression and revival of lasing. Science 346(6207), 328 (2014)

    Article  ADS  Google Scholar 

  25. A.A. Zyablovsky, A.P. Vinogradov, A.V. Dorofeenko, A.A. Pukhov, A.A. Lisyansky, Causality and phase transitions in PT-symmetric optical systems. Phys. Rev. A 89(3), 033808 (2014)

    Article  ADS  Google Scholar 

  26. S. Phang, A. Vukovic, H. Susanto, T.M. Benson, P. Sewell, Impact of dispersive and saturable gain/loss on bistability of nonlinear parity-time Bragg gratings. Opt. Lett. 39(9), 2603 (2014)

    Article  ADS  Google Scholar 

  27. S. Phang, A. Vukovic, S.C. Creagh, P.D. Sewell, G. Gradoni, T.M. Benson, Localized single frequency lasing states in a finite parity-time symmetric resonator chain. Sci. Rep. 6(20499), 1 (2016)

    Google Scholar 

  28. C. Poli, M. Bellec, U. Kuhl, F. Mortessagne, H. Schomerus, Selective enhancement of topologically induced interface states in a dielectric resonator chain. Nat. Commun. 6, 6710 (2015)

    Article  ADS  Google Scholar 

  29. P. Sewell, J. Wykes, T. Benson, C. Christopoulos, D. Thomas, A. Vukovic, Transmission-line modeling using unstructured triangular meshes. IEEE Trans. Microw. Theory Tech. 52(5), 1490 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Phang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phang, S., Vukovic, A., Gradoni, G., Sewell, P.D., Benson, T.M., Creagh, S.C. (2017). Theory and Numerical Modelling of Parity-Time Symmetric Structures in Photonics: Boundary Integral Equation for Coupled Microresonator Structures. In: Agrawal, A., Benson, T., De La Rue, R., Wurtz, G. (eds) Recent Trends in Computational Photonics. Springer Series in Optical Sciences, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-319-55438-9_7

Download citation

Publish with us

Policies and ethics