Skip to main content

Rigorous Analysis of Acousto-Optic Interactions in Optical Waveguides

  • Chapter
  • First Online:
Book cover Recent Trends in Computational Photonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 204))

  • 1401 Accesses

Abstract

Stimulated Brillouin Scattering (SBS) is a nonlinear process between interacting light and sound waves. For an accurate analysis of the interaction between the guided optical and acoustic modes, a rigorous yet computationally efficient numerical approach is needed. A finite element based full-vectorial approach was developed to find modal solutions of acoustic modes in low and high-index contrast waveguides. The SBS frequency shift, the overlaps between the quasi-TE fundamental optical mode the fundamental and the higher order quasi-shear and quasi-longitudinal acoustic modes, and SBS gain curves are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.P. Agrawal, Nonlinear Fiber Optics, 4th edn. (Academic Press, Amsterdam, 2007)

    MATH  Google Scholar 

  2. K. Hotate, M. Tanaka, Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique. IEEE Photon. Technol. Lett. 14, 179–181 (2002)

    Article  ADS  Google Scholar 

  3. K.Y. Song, K.Z. Abedin, K. Hotate, M.G. Herraez, L. Thevenaz, Highly efficient Brillouin slow and fast light using \(As_2Se_3\) chalcogenide fiber. Opt. Express 14, 5860–5865 (2006)

    Article  ADS  Google Scholar 

  4. R.M. Shelby, M.D. Levenson, P.W. Bayer, Guided acoustic-wave Brillouin scattering. Phys. Rev. B 31(8), 5244–5252 (1985)

    Article  ADS  Google Scholar 

  5. P. Dainese, P. Russell, J. St, N. Joly, J.C. Knight, G.S. Wiederhecker, H.L. Fragnito, V. Laude, A. Khelif, Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nat. Phys. 2, 388–392 (2006)

    Article  Google Scholar 

  6. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 2nd edn. (Cambridge University Press, Cambridge, 1906)

    MATH  Google Scholar 

  7. H. Ledbetter, S. Kim, Handbook of Elastic Properties of Solids, Liquids, and Gases, vol. 2 (Academic Press, San Diego, 2001)

    Google Scholar 

  8. B.A. Auld, Acoustic Fields and Waves in Solids, vol. 1 (Wiley, Canada, 1973)

    Google Scholar 

  9. R.N. Thurston, Elastic waves in rods and clad rods. J. Acoust. Soc. Am. 64(1), 1–37 (1978)

    Article  ADS  MATH  Google Scholar 

  10. A. Safaai-Jazi, R.O. Claus, Acoustic modes in optical fiberlike waveguides. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 619–627 (1988)

    Article  ADS  Google Scholar 

  11. V. Laude, J. -C. Beugnot, Generation of phonons from electrostriction in small-core optical waveguides. AIP Adv. 3 (2013)

    Google Scholar 

  12. B.M.A. Rahman, A. Agrawal, Finite Element Modeling Methods for Photonics (Artech House, London, 2013)

    MATH  Google Scholar 

  13. W. Zou, Z. He, K. Hotate, Acoustic modal analysis and control in w-shaped triple-layer optical fibers with highly-germanium-doped core and F-doped inner cladding. Opt. Express 16, 10006–10017 (2008)

    Article  ADS  Google Scholar 

  14. Y.S. Mamdem, E. Burov, L.A. de Montmorillon, Y. Aouen, G. Moreau, R. Gabet, F. Taillade, Importance of residual stresses in the Brillouin gain spectrum of single mode optical fibers. Opt. Express 20, 1790–1797 (2012)

    Article  ADS  Google Scholar 

  15. M. Koshiba, S. Mitobe, M. Suzuki, Finite-element solution of periodic waveguides for acoustic waves. IEEE Trans Ultrason. Ferroelectr. Freq. Control UFFC–34(4), 472–477 (1987)

    Article  Google Scholar 

  16. P.E. Lagasse, Higher order finite element analysis of topographic guides supporting elastic surface waves. J. Acoust. Soc. Am. 53(4), 1116–1122 (1973)

    Article  ADS  Google Scholar 

  17. G.O. Stone, High-order finite elements for inhomogeneous acoustic guiding structures. IEEE Trans Microw. Theory Tech. MTT–21(8), 538–542 (1973)

    Article  ADS  Google Scholar 

  18. V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J.M. Dudley, H. Maillotte, Phononic band-gap guidance of acoustic modes in photonic crystal fibers. Phys. Rev. B 71 (2005)

    Google Scholar 

  19. S. Sriratanavaree, B.M.A. Rahman, D.M.H. Leung, N. Kejalakshmy, K.T.V. Grattan, Rigorous characterization of acoustic-optical interactions in silicon slot waveguides by full-vectorial finite element method. Opt. Express 22, 9528–9537 (2014)

    Article  ADS  Google Scholar 

  20. O.C. Zienkiewicz, The Finite Element Method (McGraw-Hill, New York, 1977)

    MATH  Google Scholar 

  21. B.M.A. Rahman, J.B. Davies, Finite-element solution of integrated optical waveguides. J. Lightwave Technol. 2(5), 682–688 (1984)

    Article  ADS  Google Scholar 

  22. A.B. Ruffin, M.J. Li, X. Chen, A. Kobyakov, F. Annunziata, Brillouin gain analysis for fibers with different refractive indices. Opt. Lett. 30, 3123–3125 (2005)

    Article  ADS  Google Scholar 

  23. C.K. Jen, A. Safaai-Jazi, G.W. Farnell, Leaky modes in weakly guiding fiber acoustic waveguides. IEEE Tran. Ultrason. Ferroelectr. Freq. Control UFFC–33(6), 619–627 (1986)

    Google Scholar 

  24. S. Yoo, C.A. Codemard, Y. Jeong, J.K. Sahu, J. Nilsson, Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers. Appl. Opt. 49(8), 1388–1399 (2010)

    Article  ADS  Google Scholar 

  25. B.M.A. Rahman, M.M. Rahman, S. Sriratanavaree, N. Kejalakshmy, K.T.V. Grattan, Rigorous analysis of the transverse acoustic modes in optical waveguides by exploiting their structural symmetry. App. Opt. 53(29), 6797–6803 (2014)

    Article  ADS  Google Scholar 

  26. N. Kejalakshmy, A. Agrawal, Y. Aden, D.M.H. Leung, B.M.A. Rahman, K.T.V. Grattan, Characterization of silicon nanowire by use of full-vectorial finite element method. App. Opt. 49(16), 3173–3181 (2010)

    Article  ADS  Google Scholar 

  27. N. Somasiri, B.M.A. Rahman, Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls. J. Lightwave Technol. 21(1), 54–60 (2003)

    Article  ADS  Google Scholar 

  28. B.M.A. Rahman, S.S.A. Obayya, N. Somasiri, M. Rajarajan, K.T.V. Grattan, H.A. El-Mikathi, Design and characterization of compact single-section passive polarization rotator. J. Lightwave Technol. 19, 512–519 (2001)

    Article  ADS  Google Scholar 

  29. M.-J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J.A. Demeritt, A.B. Ruffin, A.M. Crowley, D.T. Walton, L.A. Zenteno, Al/Ge co-doped large mode area fiber with high SBS threshold. Opt. Express 15(13), 8290–8299 (2007)

    Article  ADS  Google Scholar 

  30. P.D. Dragic, The acoustic velocity of Ge-doped silica fibers: a comparison of two models. Int. J. Appl. Glass Sci. 1(3), 330–337 (2010)

    Article  Google Scholar 

  31. B.M.A. Rahman, M.M. Rahman, Characterization of acousto-optical interaction in planar silica optical waveguide by the finite element method. J. Opt. Soc. Am. B 33(5), 810–818 (2016)

    Article  ADS  Google Scholar 

  32. A.-C. Hladky-Hennion, Finite element analysis of the propagation of acoustic waves in waveguides. J. Sound Vibrat. 194(2), 119–136 (1996)

    Google Scholar 

  33. S. Sriratanavaree, B.M.A. Rahman, D.M.H. Leung, N. Kejalakshmy, K.T.V. Grattan, Full-vectorial finite-element analysis of acoustic modes in silica waveguides. IEEE J. Q. Elect. 50(12), 1006–1013 (2014)

    Article  ADS  Google Scholar 

  34. M. Uthman, B.M.A. Rahman, N. Kejalakshmy, A. Agrawal, H. Abana, K.T.V. Grattan, Stabilized large mode area in tapered photonic crystal fiber for stable coupling. IEEE Photonics J. 4(2), 340–349 (2012)

    Article  Google Scholar 

  35. B.J. Eggleton, C.G. Poulton, R. Pant, Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Phot. 5, 536–587 (2013)

    Article  Google Scholar 

  36. S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D.J. Richardson, L. Gr\(\ddot{u}\)ner-Nielsen, S. Herstrom, Modeling Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method. J. Lightwave Tech. 29(1), 22–30 (2011)

    Google Scholar 

  37. K. Ogusu, H. Li, Brillouin-gain coefficients of chalcogenide glasses. J. Opt. Soc. Am. B 21(7), 1302–1304 (2004)

    Article  ADS  Google Scholar 

  38. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, Simulating and designing Brillouin gain spectrum in single-mode fibers. J. Lightwave Tech. 22(2), 631–639 (2004)

    Article  ADS  Google Scholar 

  39. J.-C. Beugnot, V. Laude, Electrostriction and guidance of acoustic phonons in optical fibers. Phys. Rev. B 86(22) (2012)

    Google Scholar 

  40. P.D. Dragic, J. Ballato, S. Morris, T. Hawkins, Pockels’ coefficients of alumina in aluminosilicate optical fiber. J. Opt. Soc. Am. B 30(2), 244–250 (2013)

    Article  ADS  Google Scholar 

  41. M. Nikles, L. Thevenaz, P.A. Robert, Brillouin gain spectrum characterization in single-mode optical fibers. J. Lightwave Tech. 15(10), 1842–1851 (1997)

    Article  ADS  Google Scholar 

  42. J.-C. Beugnot, S. Lebrun, G. Pauliat, H. Maillotte, V. Laude, T. Sylvestre, Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre. Nat. Comm. 5(5242) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. A. Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, B.M.A., Rahman, M.M., Sriratanavaree, S., Kejalakshmy, N., Grattan, K.T.V. (2017). Rigorous Analysis of Acousto-Optic Interactions in Optical Waveguides. In: Agrawal, A., Benson, T., De La Rue, R., Wurtz, G. (eds) Recent Trends in Computational Photonics. Springer Series in Optical Sciences, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-319-55438-9_4

Download citation

Publish with us

Policies and ethics