Skip to main content

All-Dielectric Nanophotonic Structures: Exploring the Magnetic Component of Light

  • Chapter
  • First Online:
Recent Trends in Computational Photonics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 204))

Abstract

We discuss nanophotonic structures composed of high-index dielectric nanoparticles and present several basic approaches for numerical study of their collective optical response. We also provide comparison on the collective optical properties of dielectric and plasmonic structures, and review experimental demonstrations of Fano resonances in all-dielectric nanoparticle oligomers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.B. Evlyukhin, C. Reinhardt, A. Seidel, B.S. Luk’yanchuk, B.N. Chichkov, Optical response features of Si-nanoparticle arrays. Phys. Rev. B 82, 045404 (2010)

    Article  ADS  Google Scholar 

  2. A.E. Krasnok, A.E. Miroshnichenko, P.A. Belov, Y.S. Kivshar, Huygens optical elements and Yagi-Uda nanoantennas based on dielectric nanoparticles. JETP Lett. 94(8), 593 (2011)

    Article  Google Scholar 

  3. A. García-Etxarri, R. Gómez-Medina, L.S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, J.J. Sáenz, Strong magnetic response of submicron silicon particles in the infrared. Opt. Express 19, 4815–4826 (2011)

    Article  ADS  Google Scholar 

  4. M. Kerker, Invisible bodies. J. Opt. Soc. Am. 65, 376–379 (1975)

    Article  ADS  Google Scholar 

  5. M. Nieto-Vesperinas, R. Gomez-Medina, J.J. Saenz, Angle-suppressed scattering and optical forces on submicrometer dielectric particles. J. Opt. Soc. Am. A 28(1), 54–60 (2011)

    Article  ADS  Google Scholar 

  6. B. Rolly, B. Stout, N. Bonod, Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles. Opt. Express 20(18), 20376–20386 (2012)

    Article  ADS  Google Scholar 

  7. J.M. Geffrin, B. Garca-Cámara, P.A.R. Gómez-Medina, L.S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. Gonzáleź, M. Nieto-Vesperinas, J.J. Sáenz, F. Moreno, Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat. Commun. 3, 1171 (2012)

    Article  Google Scholar 

  8. A.I. Kuznetsov, A.E. Miroshnichenko, Y.H. Fu, J.B. Zhang, B. Luk’yanchuk, Magnetic light. Sci. Rep. 2, 492 (2012)

    Article  ADS  Google Scholar 

  9. A.B. Evlyukhin, S.M. Novikov, U. Zywietz, R.L. Eriksen, C. Reinhardt, S.I. Bozhevolnyi, B.N. Chichkov, Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett. 12, 3749–3755 (2012)

    Article  ADS  Google Scholar 

  10. W. Liu, A.E. Miroshnichenko, D.N. Neshev, Y.S. Kivshar, Broadband unidirectional scattering by magneto-electric core-shell nanoparticles. ACS Nano 6(6), 5489 (2012)

    Article  Google Scholar 

  11. Y.H. Fu, A.I. Kuznetsov, A.E. Miroshnichenko, Y.F. Yu, B. Luk’yanchuk, Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4, 1527 (2013)

    Article  ADS  Google Scholar 

  12. W. Liu, A.E. Miroshnichenko, Y.S. Kivshar, Control of light scattering by nanoparticles with optically-induced magnetic responses. Chin. Phys. B 23(23), 047806 (2014)

    Article  Google Scholar 

  13. A.E. Krasnok, A.E. Miroshnichenko, P.A. Belov, Y.S. Kivshar, All-dielectric optical nanoantennas. Opt. Express 20(18), 20599 (2012)

    Article  ADS  Google Scholar 

  14. D.S. Filonov, A.E. Krasnok, A.P. Slobozhanyuk, P.V. Kapitanova, E.A. Nenasheva, Y.S. Kivshar, P.A. Belov, Experimental verification of the concept of all-dielectric nanoantennas. Appl. Phys. Lett. 100, 201113 (2012)

    Article  ADS  Google Scholar 

  15. A. Krasnok, C. Simovski, P. Belov, Y.S. Kivshar, Superdirective dielectric nanoantenna. Nanoscale 6, 7354–7361 (2014)

    Google Scholar 

  16. A.E. Miroshnichenko, S. Flach, Y.S. Kivshar, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

  17. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)

    Article  ADS  Google Scholar 

  18. Y.S. Joe, A.M. Satanin, C.S. Kim, Classical analogy of Fano resonances. Phys. Scr. 74, 259–266 (2006)

    Article  ADS  Google Scholar 

  19. B. Gallinet, O.J.F. Martin, Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys. Rev. B 83, 235427 (2011)

    Article  ADS  Google Scholar 

  20. A.E. Miroshnichenko, Y.S. Kivshar, Fano resonances in all-dielectric oligomers. Nano Lett. 12, 6459–6463 (2012)

    Article  ADS  Google Scholar 

  21. H.H. Sheinfux, I. Kaminer, Y. Plotnik, G. Bartal, M. Segev, Subwavelength multilayer dielectrics: ultrasensitive transmission and breakdown of effective-medium theory. Phys. Rev. Lett. 113, 243901 (2014)

    Article  ADS  Google Scholar 

  22. B. Hopkins, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, Revisiting the physics of Fano resonances for nanoparticle oligomers. Phys. Rev. A 88, 053819 (2013)

    Article  ADS  Google Scholar 

  23. A.I. Kuznetsov, Light manipulation by resonant dielectric nanostructures and metasurfaces, in Proceedings of the SPIE 9544, Metamaterials, Metadevices, and Metasystems 2015 (2015), p. 95442A

    Google Scholar 

  24. I. Staude, A.E. Miroshnichenko, M. Decker, N.T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T.S. Luk, D.N. Neshev, I. Brener, Y. Kivshar, Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano 7(9), 7824–7832 (2013)

    Article  Google Scholar 

  25. B.S. Luk’yanchuk, N.V. Voshchinnikov, R. Paniagua-Domínguez, A.I. Kuznetsov, Optimum forward light scattering by spherical and spheroidal dielectric nanoparticles with high refractive index. ACS Photon. 2(7), 993–999 (2015)

    Article  Google Scholar 

  26. K.E. Chong, B. Hopkins, I. Staude, A.E. Miroshnichenko, J. Dominguez, M. Decker, D.N. Neshev, I. Brener, Y.S. Kivshar, Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10(10), 1985–1990 (2014)

    Article  Google Scholar 

  27. B. Hopkins, D.S. Filonov, A.E. Miroshnichenko, F. Monticone, A. Alù, Y.S. Kivshar, Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances. ACS Photon. 2, 724–729 (2015)

    Article  Google Scholar 

  28. C. Pfeiffer, A. Grbic, Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013)

    Article  ADS  Google Scholar 

  29. M. Decker, I. Staude, M. Falkner, J. Dominguez, D.N. Neshev, I. Brener, T. Pertsch, Y.S. Kivshar, High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015)

    Article  Google Scholar 

  30. K.E. Chong, I. Staude, A. James, J. Dominguez, S. Liu, S. Campione, G.S. Subramania, T.S. Luk, M. Decker, I.B. Dragomir, N. Neshev, Y.S. Kivshar, Polarization-independent silicon metadevices for efficient optical wavefront control. Nano Lett. 15(8), 5369–5374 (2015)

    Article  ADS  Google Scholar 

  31. A. Arbabi, Y. Horie, M. Bagheri, A. Faraon, Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Mater. 10, 937–944 (2015)

    Google Scholar 

  32. A.D. Yaghjian, Electric dyadic Green‘s functions in the source region. Proc. IEEE 68(2), 248–263 (1980)

    Article  Google Scholar 

  33. D.A. Powell, Resonant dynamics of arbitrarily shaped meta-atoms. Phys. Rev. B 90, 075108 (2014)

    Article  ADS  Google Scholar 

  34. M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A.P. Alivisatos, N. Liu, Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721–2726 (2010)

    Article  ADS  Google Scholar 

  35. B. Hopkins, W. Liu, A.E. Miroshnichenko, Y.S. Kivshar, Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters. Nanoscale 5, 6395–6403 (2013)

    Article  ADS  Google Scholar 

  36. M. Rahmani, E. Yoxall, B. Hopkins, Y. Sonnefraud, Y. Kivshar, M. Hong, C. Phillips, S.A. Maier, A.E. Miroshnichenko, Plasmonic nanoclusters with rotational symmetry: polarization-invariant far-field response vs changing near-field distribution. ACS Nano 7, 11138–11146 (2013)

    Article  Google Scholar 

  37. G.W. Mulholland, C.F. Bohren, K.A. Fuller, Light scattering by agglomerates: coupled electric and magnetic dipole method. Langmuir 10(8), 2533 (1994)

    Article  Google Scholar 

  38. B.T. Draine, P.J. Flatau, Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. A 11, 1491–1499 (1994)

    Article  ADS  Google Scholar 

  39. G. Mie, Beitrage zur optik truber medien. Ann. Phys. 25, 377–445 (1908)

    Article  MATH  Google Scholar 

  40. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  41. J. Chen, J. Ng, Z. Lin, C.T. Chan, Optical pulling force. Nat. Photon. 5, 531–534 (2011)

    Article  ADS  Google Scholar 

  42. P. Grahn, A. Shevchenko, M. Kaivola, Electromagnetic multipole theory for optical nanomaterials. New J. Phys. 14, 093033 (2012)

    Article  ADS  Google Scholar 

  43. A.E. Miroshnichenko, A.B. Evlyukhin, Y.F. Yu, R.M. Bakker, A. Chipouline, A.I. Kuznetsov, B. Luk’yanchuk, B.N. Chichkov, Y.S. Kivshar, Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun. 6, 8069 (2015)

    Article  ADS  Google Scholar 

  44. F.B. Arango, A.F. Koenderink, Polarizability tensor retrieval for magnetic and plasmonic antenna design. New J. Phys. 15, 073023 (2013)

    Article  Google Scholar 

  45. L.D. Landau, E.M. Lifshitz, L.P. PitaevskiÄ­, Statistical Physics, Part 1, 3rd edn. Course of Theoretical Physics, vol. 5 (Pergamon Press Ltd., New York, 1980)

    Google Scholar 

  46. F. Gantmacher, The Theory of Matrices (Chelsea Publishing Company, New York, 1959)

    MATH  Google Scholar 

  47. B. Craven, Complex symmetric matrices. J. Aust. Math. Soc. 10, 341–354 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  48. O. Merchiers, F. Moreno, F. Gonzalez, J.M. Saiz, Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities. Phys. Rev. A. 76(4), 043834 (2007)

    Article  ADS  Google Scholar 

  49. A.M. Kern, O.J.F. Martin, Pitfalls in the determination of optical cross sections from surface integral equation simulations. IEEE Trans. Antennas. Propag. 58(6), 2158–2161 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. B. Hopkins, A.N. Poddubny, A.E. Miroshnichenko, Y.S. Kivshar, Circular dichroism induced by Fano resonances in planar chiral oligomers. Laser Photon. Rev. 10(1), 137–146 (2016)

    Article  Google Scholar 

  51. C. Forestiere, L.D. Negro, G. Miano, Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures. Phys. Rev. B 88, 155411 (2013)

    Article  ADS  Google Scholar 

  52. M. Frimmer, T. Coenen, A.F. Koenderink, Signature of a Fano resonance in a plasmonic metamolecule’s local density of optical states. Phys. Rev. Lett. 108, 077404 (2012)

    Article  ADS  Google Scholar 

  53. A. Lovera, B. Gallinet, P. Nordlander, O.J. Martin, Mechanisms of Fano resonances in coupled plasmonic systems. ACS Nano 7(5), 4527–4536 (2013)

    Article  Google Scholar 

  54. B. Hopkins, D.S. Filonov, S.B. Glybovski, A.E. Miroshnichenko, Hybridization and the origin of Fano resonances in symmetric nanoparticle trimers. Phys. Rev. B 92, 045433 (2015)

    Article  ADS  Google Scholar 

  55. W.D. Heiss, Exceptional points of non-hermitian operators. J. Phys. A: Math. Gen. 37, 2455 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. C. Dembowski, H.-D. Graf, H.L. Harney, A. Heine, W.D. Heiss, H. Rehfeld, A. Richter, The physics of exceptional points. Phys. Rev. Lett. 86, 787–790 (2001)

    Article  ADS  Google Scholar 

  57. W.D. Heiss, The physics of exceptional points. J. Phys. A: Math. Theor. 45, 444016 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  58. J. Yan, P. Liu, Z. Lin, H. Wang, H. Chen, C. Wang, G. Yang, Directional Fano resonances in a silicon nanoparticle dimer. ACS Nano 9, 2968–2980 (2015)

    Article  Google Scholar 

  59. R.M. Bakker, D. Permyakov, Y.F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, A.I. Kuznetsov, Magnetic and electric hotspots with silicon nanodimers. Nano Lett. 15(3), 2137–2142 (2015)

    Article  ADS  Google Scholar 

  60. U. Zywietz, M.K. Schmidt, A.B. Evlyukhin, C. Reinhardt, J. Aizpurua, B.N. Chichkov, Electromagnetic resonances of silicon nanoparticle dimers in the visible. ACS Photon. 2, 913–920 (2015)

    Article  Google Scholar 

  61. A.E. Miroshnichenko, B. Luk’yanchuk, S.A. Maier, Y.S. Kivshar, Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 6(1), 837–842 (2011)

    Article  Google Scholar 

  62. I. Fernandez-Corbaton, G. Molina-Terriza, Role of duality symmetry in transformation optics. Phys. Rev. B 88, 085111 (2013)

    Article  ADS  Google Scholar 

  63. X. Zambrana-Puyalto, I. Fernandez-Corbaton, M.L. Juan, X. Vidal, G. Molina-Terriza, Duality symmetry and Kerker conditions. Opt. Lett. 38(11), 1857–1859 (2013)

    Article  ADS  Google Scholar 

  64. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  MATH  ADS  Google Scholar 

  65. D.S. Filonov, A.P. Slobozhanyuk, A.E. Krasnok, P.A. Belov, E.A. Nenasheva, B. Hopkins, A.E. Miroshnichenko, Y.S. Kivshar, Near-field mapping of Fano resonances in all-dielectric oligomers. Appl. Phys. Lett. 104, 021104 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hopkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hopkins, B., Miroshnichenko, A.E., Kivshar, Y.S. (2017). All-Dielectric Nanophotonic Structures: Exploring the Magnetic Component of Light. In: Agrawal, A., Benson, T., De La Rue, R., Wurtz, G. (eds) Recent Trends in Computational Photonics. Springer Series in Optical Sciences, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-319-55438-9_10

Download citation

Publish with us

Policies and ethics