Skip to main content

Finite Element Time Domain Method for Photonics

  • Chapter
  • First Online:
  • 1496 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 204))

Abstract

Time domain analysis of electromagnetics is currently dominated by the finite difference time domain (FDTD) method. Current finite element (FE) counterparts of the FDTD method are slower in execution and hard to parallelise. This chapter presents a point matched finite element based method with dual perforated mesh system which allows faster execution time than the FDTD for equilateral elements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Ins. means instructions and Late. means latency/CPU cycles.

References

  1. J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. J. Berenger, Perfectly matched layer for the fdtd solution of wave-structure interaction problems. IEEE Trans. Antennas Propag. 44(1), 110–117 (1996)

    Article  ADS  Google Scholar 

  3. A. Cangellaris, C. Lin, K. Mei, Point-matched time domain finite element methods for electromagnetic radiation and scattering. IEEE Trans. Antennas Propag. 35(10), 1160–1173 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. Joannopoulos, S. Johnson, G. Burr, Improving accuracy by subpixel smoothing in the finite-difference time domain. Opt. Lett. 31(20), 2972–2974 (2006)

    Article  ADS  Google Scholar 

  5. S. Gedney, U. Navsariwala, An unconditionally stable finite element time-domain solution of the vector wave equation. IEEE Microw. Guided Wave Lett. 5(10), 332–334 (1995)

    Article  Google Scholar 

  6. C. Guiffaut, K. Mahdjoubi, A parallel fdtd algorithm using the mpi library. IEEE Antennas Propag. Mag. 43(2), 94–103 (2001)

    Article  ADS  Google Scholar 

  7. S. Hagness, A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2 edn. (Artech House, 2000)

    Google Scholar 

  8. K. Hayata, M. Koshiba, M. Eguchi, M. Suzuki, Vectorial finite-element method without any spurious solutions for dielectric waveguiding problems using transverse magnetic-field component. IEEE Trans. Microw. Theory Tech. 34(11), 1120–1124 (1986)

    Article  ADS  Google Scholar 

  9. Intel Corporation: Intel\(^{\textregistered }\) 64 and IA-32 Architectures Optimization Reference Manual (2014)

    Google Scholar 

  10. J.M. Jin, The Finite Element Method in Electromagnetics (Wiley, New Jersey, 2014)

    Google Scholar 

  11. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light, 2 edn. (Princeton University Press, Princeton, 2008)

    Google Scholar 

  12. J. Juntunen, T. Tsiboukis, Reduction of numerical dispersion in fdtd method through artificial anisotropy. IEEE Trans. Microw. Theory Tech. 48(4), 582–588 (2000)

    Article  ADS  Google Scholar 

  13. S.M.R. Kabir, B. Rahman, A. Agrawal, K.T.V. Grattan, Elimination of numerical dispersion from electromagnetic time domain analysis by using resource efficient finite element technique. Progr. Electromag. Res. 137, 487–512 (2013)

    Article  Google Scholar 

  14. S.M.R. Kabir, B.M.A. Rahman, K.T.V. Grattan, Speeding beyond fdtd, perforated finite element time domain method for 3d electromagnetics. Progr. Electromagn. Res. B 64, 171–193 (2015)

    Article  Google Scholar 

  15. E. Kirby, J. Hamm, K. Tsakmakidis, O. Hess, FDTD analysis of slow light propagation in negative-refractive-index metamaterial waveguides. J. Opt. A Pure Appl. Opt. 11(11), 114,027 (2009)

    Google Scholar 

  16. M. Koshiba, Optical Waveguide Theory by the Finite Element Method (Ktk Scientific, 1993)

    Google Scholar 

  17. M. Koshiba, K. Hayata, M. Suzuki, Approximate scalar finite-element analysis of anisotropic optical waveguides. Electron. Lett. 18(10), 411–413 (1982)

    Article  Google Scholar 

  18. M. Koshiba, Y. Tsuji, M. Hikari, Time-domain beam propagation method and its application to photonic crystal circuits. J. Lightwave Technol. 18(1), 102 (2000)

    Article  ADS  Google Scholar 

  19. J. Lee, R. Lee, A. Cangellaris, Time-domain finite-element methods. IEEE Trans. Antennas Propag. 45(3), 430–442 (1997)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. D. Leung, N. Kejalakshmy, B. Rahman, K. Grattan, Rigorous modal analysis of silicon strip nanoscale waveguides. Opt. Express 18(8), 8528–8539 (2010)

    Article  ADS  Google Scholar 

  21. D.S. Lo, Finite Element Mesh Generation (CRC Press, Boca Raton, 2015)

    Google Scholar 

  22. J. Mackerle, 2d and 3d finite element meshing and remeshing: a bibliography (1990–2001). Eng. Comput. 18(8), 1108–1197 (2001)

    Article  MATH  Google Scholar 

  23. S. Obayya, Computational Photonics (Wiley, New Jersey, 2011)

    Google Scholar 

  24. B. Rahman, J. Davies, Finite-element analysis of optical and microwave waveguide problems. IEEE Trans. Microw. Theory Tech. 32(1), 20–28 (1984)

    Article  ADS  Google Scholar 

  25. B. Rahman, J. Davies, Finite-element solution of integrated optical waveguides. J. Lightwave Technol. 2(5), 682–688 (1984)

    Article  ADS  Google Scholar 

  26. B.A. Rahman, A. Agrawal, Finite Element Modeling Methods For Photonics (Artech House, 2013)

    Google Scholar 

  27. S.M. Raiyan Kabir, B.M.A. Rahman, Computationally efficient dual perforated finite element time domain method, in Advanced Photonics 2013 (Optical Society of America, 2013), p. IM2B.3, https://doi.org/10.1364/IPRSN.2013.IM2B.3, http://www.osapublishing.org/abstract.cfm?URI=IPRSN-2013-IM2B.3

  28. P. Sewell, J. Wykes, T. Benson, D. Thomas, A. Vukovic, C. Christopoulos, Transmission line modelling using unstructured meshes. IEE Proc. Sci. Meas. Technol. 151(6), 445–448 (2004)

    Article  Google Scholar 

  29. A. Smyk, M. Tudruj, Openmp/MPI programming in a multi-cluster system based on shared memory/message passing communication. Adv. Environ. Tools Appl. Clust. Comput. 157–160 (2002)

    Google Scholar 

  30. H. Songoro, M. Vogel, Z. Cendes, Keeping time with maxwell’s equations. IEEE Microw. Mag. 11(2), 42–49 (2010)

    Article  Google Scholar 

  31. A. Taflove, M. Brodwin, Numerical solution of steady-state electromagnetic scattering problems using the time-dependent maxwell’s equations. IEEE Trans. Microw. Theory Tech. 23(8), 623–630 (1975)

    Article  ADS  Google Scholar 

  32. A. Taflove, S. Hagness, Computational Electrodynamics (Artech house, Boston, 1995)

    Google Scholar 

  33. F.M. Tesche, M. Ianoz, T. Karlsson, EMC Analysis Methods and Computational Models (Wiley, New Jersey, 1997)

    Google Scholar 

  34. W. Thacker, A brief review of techniques for generating irregular computational grids. Int. J. Numer. Methods Eng. 15(9), 1335–1341 (1980)

    Article  MATH  Google Scholar 

  35. G.S. Warren, W.R. Scott, Numerical dispersion in the finite-element method using triangular edge elements. Microw. Opt. Technol. Lett. 9(6), 315–319 (1995)

    Article  Google Scholar 

  36. J. Whinnery, S. Ramo, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New Jersey, 1994)

    Google Scholar 

  37. E. Yamashita, Analysis Methods for Electromagnetic Wave Problems (Artech House, Boston, 1990)

    Google Scholar 

  38. K. Yee, Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. A. Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raiyan Kabir, S.M., Rahman, B.M.A., Agrawal, A. (2017). Finite Element Time Domain Method for Photonics. In: Agrawal, A., Benson, T., De La Rue, R., Wurtz, G. (eds) Recent Trends in Computational Photonics. Springer Series in Optical Sciences, vol 204. Springer, Cham. https://doi.org/10.1007/978-3-319-55438-9_1

Download citation

Publish with us

Policies and ethics