Skip to main content

Conformal Radiation Therapy for Pediatric CNS Tumors

  • Chapter
  • First Online:
Radiation Oncology for Pediatric CNS Tumors

Abstract

3D conformal radiation therapy (3DCRT) and intensity-modulated radiation therapy (IMRT) are both commonly utilized for pediatric brain tumors. 3DCRT has been available for a longer period. There is protracted follow-up on patients treated with 3DCRT. IMRT is a newer technology that developed in parallel with advances in other radiation delivery such as image guidance. Similar tumor coverage can be either 3DCRT or IMRT. They differ in the ability to achieve conformity around irregularly volumes. IMRT can achieve highly conformal plans although intense modulation can impact dose homogeneity. VMAT is a form of IMRT rotational. The addition of static or rotational beams can expose nontarget tissue to lose dose radiation. The balance of tumor coverage and dose homogeneity against the impact of collateral radiation to nontarget tissues impacting neurocognitive functioning for cranial radiation or anticipated renal and cardiopulmonary function in craniospinal radiation is the main factor in deciding what the optimal photon radiation treatment is for pediatric CNS tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aoyama H et al (2006) Integral radiation dose to normal structures with conformal external beam radiation. Int J Radiat Oncol Biol Phys 64(3):962–967

    Article  PubMed  Google Scholar 

  • Bakiu E et al (2013) Comparison of 3D CRT and IMRT treatment plans. Acta Inform Med 21(3):211–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandurska-Luque A et al (2015) Prospective study on dosimetric comparison of helical tomotherapy and 3DCRT for craniospinal irradiation—a single institution experience. Rep Pract Oncol Radiother 20(2):145–152

    Article  PubMed  PubMed Central  Google Scholar 

  • Blomstrand M et al (2012) Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma. Neuro Oncol 14(7):882–889

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang A et al (2014) Pediatric proton therapy: patterns of care across the United States. Int J Particle Ther 1(2):357–367

    Article  Google Scholar 

  • Chen MJ et al (2010) Intensity-modulated and 3D-conformal radiotherapy for whole-ventricular irradiation as compared with conventional whole-brain irradiation in the management of localized central nervous system germ cell tumors. Int J Radiat Oncol Biol Phys 76(2):608–614

    Article  PubMed  Google Scholar 

  • D’Souza WD, Rosen II (2003) Nontumor integral dose variation in conventional radiotherapy treatment planning. Med Phys 30(8):2065–2071

    Article  PubMed  Google Scholar 

  • Eriksson PS et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Fenwick JD et al (2006) Tomotherapy and other innovative IMRT delivery systems. Semin Radiat Oncol 16(4):199–208

    Article  PubMed  Google Scholar 

  • Fogliata A et al (2009) On the performances of intensity modulated protons, rapidarc and helical tomotherapy for selected paediatric cases. Radiat Oncol 4:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenfield BJ et al (2015) Long-term disease control and toxicity outcomes following surgery and intensity modulated radiation therapy (IMRT) in pediatric craniopharyngioma. Radiother Oncol 114(2):224–229

    Article  PubMed  Google Scholar 

  • Hall EJ, Wuu CS (2003) Radiation-induced second cancers: the impact of 3D-CRT and IMRT. Int J Radiat Oncol Biol Phys 56(1):83–88

    Article  PubMed  Google Scholar 

  • Harron E, Lewis J (2012) Bowel sparing in pediatric cranio-spinal radiotherapy: a comparison of combined electron and photon and helical TomoTherapy techniques to a standard photon method. Med Dosim 37(2):140–144

    Article  PubMed  Google Scholar 

  • Hellstrom NA et al (2009) Differential recovery of neural stem cells in the subventricular zone and dentate gyrus after ionizing radiation. Stem Cells 27(3):634–641

    Article  PubMed  Google Scholar 

  • Hermanto U et al (2007) Intensity-modulated radiotherapy (IMRT) and conventional three-dimensional conformal radiotherapy for high-grade gliomas: does IMRT increase the integral dose to normal brain? Int J Radiat Oncol Biol Phys 67(4):1135–1144

    Article  PubMed  Google Scholar 

  • Huang E et al (2002) Intensity-modulated radiation therapy for pediatric medulloblastoma: early report on the reduction of ototoxicity. Int J Radiat Oncol Biol Phys 52(3):599–605

    Article  PubMed  Google Scholar 

  • Kazda T et al (2015) Volumetric modulated arc therapy for hippocampal-sparing radiotherapy in transformed low-grade glioma: a treatment planning case report. Cancer Radiother 19(3):187–191

    Article  CAS  PubMed  Google Scholar 

  • Koshy M et al (2004) Extra-target doses in children receiving multileaf collimator (MLC) based intensity modulated radiation therapy (IMRT). Pediatr Blood Cancer 42(7):626–630

    Article  PubMed  Google Scholar 

  • Lee YK et al (2012) Development and evaluation of multiple isocentric volumetric modulated arc therapy technique for craniospinal axis radiotherapy planning. Int J Radiat Oncol Biol Phys 82(2):1006–1012

    Article  PubMed  Google Scholar 

  • Lee JS et al (2016) Increased risk of second malignant neoplasms in adolescents and young adults with cancer. Cancer 122(1):116–123

    Article  PubMed  Google Scholar 

  • Lightstone AW et al (2012) Cone beam CT (CBCT) evaluation of inter- and intra-fraction motion for patients undergoing brain radiotherapy immobilized using a commercial thermoplastic mask on a robotic couch. Technol Cancer Res Treat 11(3):203–209

    Article  CAS  PubMed  Google Scholar 

  • Mackie TR (2006) History of tomotherapy. Phys Med Biol 51(13):R427–R453

    Article  CAS  PubMed  Google Scholar 

  • Mansur DB et al (2007) Measured peripheral dose in pediatric radiation therapy: a comparison of intensity-modulated and conformal techniques. Radiother Oncol 82(2):179–184

    Article  PubMed  Google Scholar 

  • Mascarin M et al (2011) Helical tomotherapy in children and adolescents: dosimetric comparisons, opportunities and issues. Cancers (Basel) 3(4):3972–3990

    Article  Google Scholar 

  • Merchant TE et al (1999) Preliminary results of conformal radiation therapy for medulloblastoma. Neuro Oncol 1(3):177–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant TE et al (2006) Phase II trial of conformal radiation therapy for pediatric patients with craniopharyngioma and correlation of surgical factors and radiation dosimetry with change in cognitive function. J Neurosurg 104(2 suppl):94–102

    PubMed  Google Scholar 

  • Merchant TE et al (2009) Late effects of conformal radiation therapy for pediatric patients with low-grade glioma: prospective evaluation of cognitive, endocrine, and hearing deficits. J Clin Oncol 27(22):3691–3697

    Article  PubMed  PubMed Central  Google Scholar 

  • Merchant TE et al (2013) Disease control after reduced volume conformal and intensity modulated radiation therapy for childhood craniopharyngioma. Int J Radiat Oncol Biol Phys 85(4):e187–e192

    Article  PubMed  Google Scholar 

  • Monje ML et al (2007) Impaired human hippocampal neurogenesis after treatment for central nervous system malignancies. Ann Neurol 62(5):515–520

    Article  PubMed  Google Scholar 

  • Moteabbed M et al (2014) The risk of radiation-induced second cancers in the high to medium dose region: a comparison between passive and scanned proton therapy, IMRT and VMAT for pediatric patients with brain tumors. Phys Med Biol 59(12):2883–2899

    Article  PubMed  Google Scholar 

  • Oh KS et al (2011) Outcomes of multidisciplinary management in pediatric low-grade gliomas. Int J Radiat Oncol Biol Phys 81(4):e481–e488

    Article  PubMed  Google Scholar 

  • Parker WA, Freeman CR (2006) A simple technique for craniospinal radiotherapy in the supine position. Radiother Oncol 78(2):217–222

    Article  PubMed  Google Scholar 

  • Paulino AC et al (2013) Intensity-modulated radiotherapy (IMRT) in pediatric low-grade glioma. Cancer 119(14):2654–2659

    Article  PubMed  Google Scholar 

  • Penagaricano J et al (2009) Pediatric craniospinal axis irradiation with helical tomotherapy: patient outcome and lack of acute pulmonary toxicity. Int J Radiat Oncol Biol Phys 75(4):1155–1161

    Article  PubMed  Google Scholar 

  • Pirzkall A et al (2002) The effect of beam energy and number of fields on photon-based IMRT for deep-seated targets. Int J Radiat Oncol Biol Phys 53(2):434–442

    Article  PubMed  Google Scholar 

  • Polkinghorn WR et al (2011) Disease control and ototoxicity using intensity-modulated radiation therapy tumor-bed boost for medulloblastoma. Int J Radiat Oncol Biol Phys 81(3):e15–e20

    Article  PubMed  Google Scholar 

  • Qi XS et al (2012) Potential for improved intelligence quotient using volumetric modulated arc therapy compared with conventional 3-dimensional conformal radiation for whole-ventricular radiation in children. Int J Radiat Oncol Biol Phys 84(5):1206–1211

    Article  PubMed  Google Scholar 

  • Schroeder TM et al (2008) Intensity-modulated radiation therapy in childhood ependymoma. Int J Radiat Oncol Biol Phys 71(4):987–993

    Article  PubMed  Google Scholar 

  • St Clair WH et al (2004) Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int J Radiat Oncol Biol Phys 58(3):727–734

    Article  CAS  PubMed  Google Scholar 

  • Tarbell NJ et al (2000) The challenge of conformal radiotherapy in the curative treatment of medulloblastoma. Int J Radiat Oncol Biol Phys 46(2):265–266

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia N. Laack M.D., M.S. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Daniels, T.B., Laack, N.N. (2018). Conformal Radiation Therapy for Pediatric CNS Tumors. In: Mahajan, A., Paulino, A. (eds) Radiation Oncology for Pediatric CNS Tumors. Springer, Cham. https://doi.org/10.1007/978-3-319-55430-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55430-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55428-0

  • Online ISBN: 978-3-319-55430-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics