Skip to main content

The Contributions of Mycorrhizas in the Mineralization of Organic Contaminants

  • Chapter
  • First Online:
Enhancing Cleanup of Environmental Pollutants
  • 979 Accesses

Abstract

This chapter aimed to (a) overview organic pollutants and their sources, (b) introduce mycorrhizas and highlight their relationship with plants and role in the degradation of organics providing some experimental evidence, (c) discuss interaction of mycorrhizas with other soil microbes, and (d) point resultant effect of degradation on soil health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aranda E, Scervino JM, Godoy P, Reina R, Ocampo JA, Wittich R, García-Romera I (2013) Role of arbuscular mycorrhizal fungus Rhizophagus custos in the dissipation of PAHs under root-organ culture conditions. Environ Pollut 181:182–189

    Article  CAS  Google Scholar 

  • Asmar F, Singh T, Nielsen G, Nielsen NE (1995) Barley genotypes differ in activity of soluble extracellular phosphatase and depletion of organic phosphorus in the rhizosphere soil. Plant and Soil 172:117–122

    Article  CAS  Google Scholar 

  • Auge RM, Stodola AJW, Brown MS, Bethlenfalvay GJ (1992) Stomatal response of mycorrhizal cowpea and soybean to short-term osmotic stress. New Phytol 120:117–125

    Article  Google Scholar 

  • Binet PH, Portal JM, Leyval C (2000) Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass. Plant and Soil 227:207–213

    Article  CAS  Google Scholar 

  • Braunberger PG, Abbott LK, Robson AD (1997) Early vesicular-arbuscular mycorrhizal colonization in soil collected from an annual clover-based pasture in a Mediterranean environment: soil temperature and timing of autumn rains. Aust J Agr Res 48:103–110

    Article  Google Scholar 

  • Braun-Lüllemann A, Hüttermann A, Majcherczyk A (1999) Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons. Appl Microbiol Biotechnol 53:127–132

    Article  Google Scholar 

  • Cabello MN (1997) Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF). FEMS Microbiol Ecol 22:233–236

    Article  CAS  Google Scholar 

  • Cabello MN (1999) Effectiveness of indigenous arbuscular mycorrhizal fungi (AMF) isolated from hydrocarbon polluted soils. J Basic Microbiol 39:89–95

    Article  CAS  Google Scholar 

  • Criquet S, Joner EJ, Léglize P, Leyval C (2000) Anthracene and mycorrhiza affect the activity of oxidoreductases in the roots and the rhizosphere of lucerne (Medicago sativa L.) Biotechnol Lett 22:1733–1737

    Article  CAS  Google Scholar 

  • Davies FT Jr, Potter JR, Linderman RG (1992) Mycorrhiza and repeated drought exposure affect drought resistance and extra-radical hyphae development of pepper plants independently of plant size and nutrient content. J Plant Physiol 139:289–294

    Article  Google Scholar 

  • Davies FT Jr, Potter JR, Linderman RG (1993) Drought resistance of mycorrhizal pepper plants independent of leaf P concentration-response in gas exchange and water relations. Physiol Plant 87:45–53

    Article  CAS  Google Scholar 

  • Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Saraiva GJA (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786

    Article  CAS  Google Scholar 

  • Donnelly PK, Fletcher JS (1995) PCB metabolism by ectomycorrhizal fungi. Bull Environ Contam Toxicol 54:507–513

    Article  CAS  Google Scholar 

  • Donnelly PK, Entry JA, Crawford DL (1993) Degradation of atrazine and 2,4 dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl Environ Microbiol 59:2642–2647

    CAS  Google Scholar 

  • Druge U, Schonbeck F (1992) Effect of vesicular-arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax (Linum usitatissimum L.) in relation to cytokinin levels. J Plant Physiol 141:40–48

    Article  Google Scholar 

  • Dubey KK, Fulekar MH (2011) Mycorrhizosphere development and management: the role of nutrients, microorganisms and bio-chemical activities. Agric Biol J N Am 2(2):315–324

    Article  CAS  Google Scholar 

  • Fox TR, Comerford NB (1992) Rhizosphere phosphatase activity and phosphatase hydrolyzable organic phosphorus in two forested spodosols. Soil Biol Biochem 24:579–583

    Article  CAS  Google Scholar 

  • Gange A (1993) Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol Biochem 25:1021–1026

    Article  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis (Tansley Review, 76). New Phytol 128:197–210

    Article  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86(4):528–533

    CAS  Google Scholar 

  • Gianinazzi S, Schüepp H (1994) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Berlin, p 226

    Book  Google Scholar 

  • Habte M (1995) Soil acidity as a constraint to the application of vesicular-arbuscular mycorrhizal technology. In: Varma A, Hock B (eds) Mycorrhiza-structure, function, molecular biology and biotechnology. Springer, Berlin, pp 593–603

    Google Scholar 

  • Habte M, Soedarjo M (1996) Response of Acacia mangium to vesicular-arbuscular mycorrhizal inoculation, soil pH, and soil P concentration in an oxisol. Can J Bot 74:155–161

    Article  Google Scholar 

  • Helal H, Dressler A (1989) Mobilization and turnover of soil phosphorus in the rhizosphere. Z Pflanzenernähr Bondenk 152:175–180

    Article  CAS  Google Scholar 

  • Jayachandran K, Schwab AP, Hetrick BA (1992) Mineralization of organic phosphorus by vesicular–arbuscular mycorrhizal fungi. Soil Biol Biochem 24:897–903

    Article  CAS  Google Scholar 

  • Johnson CR, Hummel RL (1985) Influence of mycorrhizae and drought stress on growth of Poncirus x Citrus seedlings. Hortic Sci 20:754–755

    Google Scholar 

  • Joner EJ, Corgie SC, Amella N, Leyval C (2002) Nutritional contributions to degradation of polycyclic aromatic hydrocarbons in a simulated rhizosphere. Soil Biology. Biochemistry. 24:859–864

    Article  Google Scholar 

  • Joner EJ, Jakobsen I (1995) Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol Biochem 27:1153–1159

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (2003a) Phytoremediation of organic pollutants using mycorrhizal plants: a new aspect of rhizosphere interactions. Agronomie 23:495–502

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (2003b) Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular mycorrhiza. Environ Sci Technol 37(11):2371–2375

    Article  CAS  Google Scholar 

  • Khan AG (2006) Mycorrhizoremediation – an enhanced form of phytoremediation. J Zhejiang Univ Sci B 7(7):503–514

    Article  Google Scholar 

  • Kothari SK, Marschner H, Romheld V (1990) Direct and indirect effects of VA mycorrhizae and rhizosphere microorganisms on mineral nutrient acquisition by maize (Zea mays L.) in a calcareous soil. New Phytol 116:637–645

    Article  CAS  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16:248–254

    Article  CAS  Google Scholar 

  • Lebron L, Zou XM, Lodge DJ (1998) Disturbance VA mycorrhizae by earthworm in a pasture and a forest in Puerto Rico. Second International Conference on Mycorrhiza, Uppsala, 5–10 July 1998

    Google Scholar 

  • Leyval C, Binet P (1998) Effect of polyaromatic hydrocarbons in soil on arbuscular mycorrhizal plants. J Environ Qual 27:402–407

    Article  CAS  Google Scholar 

  • Ma Y, Zhang JY, Wong MH (2003) Microbial activity during composting of anthracene-contaminated soil. Chemosphere 52:1505–1513

    Article  CAS  Google Scholar 

  • Ma Y, Dickinson NM, Wong MH (2006) Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous tress on Pb/Zn mine tailings. Soil Biol Biochem 38:1403–1412

    Article  CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Ectomycorrhizas – extending the capacities of rhizosphere remediation? Soil Biol Biochem 32:1475–1484

    Article  CAS  Google Scholar 

  • Meharg AA, Cairney JWG, Maguire N (1997) Mineralization of 2,4-dichlorophenol by ectomycorrhizal fungi in axenic culture and in symbiosis with pine. Chemosphere 34:2495–2504

    Article  CAS  Google Scholar 

  • Meyer JR, Linderman RG (1986) Response of subterranean clover to dual-inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol Biochem 18:185–190

    Article  CAS  Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63

    Article  Google Scholar 

  • Michelsen A, Quarmby C, Sleep D, Jonasson S (1998) Vascular plant N-15 natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia 115:406–418

    Article  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732

    Article  CAS  Google Scholar 

  • Morgan JE, Norey CG, Morgan AJ, Kay J (1989) A comparison of the cadmium-binding proteins isolated from the posterior alimentary canal of the earthworms Dendrodrilus rubidus and Lumbricus rubellus. Comp Biochem Physiol 92C:15–21

    CAS  Google Scholar 

  • Nwoko CO, Okeke PN, Ogbonna PC (2013) Influence of soil particle size and arbuscular mycorrhizal fungi (AMF) in the performance of Phaseolus vulgaris grown under crude oil contaminated soil. Univers J Environ Res Technol 3(2):300–310

    Google Scholar 

  • Puppi G, Azcon R, Hoflich G (1994) Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser Verlag, Basel, pp 201–215

    Chapter  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  Google Scholar 

  • Rillig MC, Steinberg PD (2002) Glomalin production by an arbuscular mycorrhizal fungus: a mechanism of habitat modification. Soil Biol Biochem 34:1371–1374

    Article  CAS  Google Scholar 

  • Scheibner K, Hofrichter M, Herre A, Michels J, Fritsche W (1997) Screening for fungi intensively mineralizing 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 47:452–457

    Article  CAS  Google Scholar 

  • Schenck NC, Smith GS (1982) Responses of six species of vesicular-arbuscular mycorrhizal fungi and their effects on soybean at four soil temperatures. New Phytol 92:193–201

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego, p 605

    Google Scholar 

  • Sweatt MR, Davies FT Jr (1984) Mycorrhizae, water relations, growth, and nutrient uptake of geranium grown under moderately high phosphorus regimes. J Am Soc Hort Sci 109:210–213

    Google Scholar 

  • Tarafdar JC, Marshner H (1994) Phosphatase activity in the rhizosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395

    Article  CAS  Google Scholar 

  • Tylka GL, Hussey RS, Roncadori RW (1991) Axenic germination of vesicular-arbuscular mycorrhizal fungi: effects of selected Streptomyces species. Phytopathology 81:754–759

    Article  Google Scholar 

  • Varela FL, Quiñones-Aguilar EE, Alarcón A, Ferrera-Cerrato R (2000) Arbuscular mycorrhizal fungi from hydrocarbon-contaminated soils. In: Proceedings First Iberoamerican Meeting and Third National Symposium of Mycorrhizal Symbioses, Guanajuato, 27–29 Sept 2000. [In Spanish]

    Google Scholar 

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478

    Article  CAS  Google Scholar 

  • Yu X, Cheng J, Wong MH (2005) Earthworm-mycorrhiza interaction on Cd uptake and growth of ryegrass. Soil Biol Biochem 37:195–201

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris O. Nwoko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nwoko, C.O. (2017). The Contributions of Mycorrhizas in the Mineralization of Organic Contaminants. In: Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-319-55426-6_6

Download citation

Publish with us

Policies and ethics