Skip to main content

Plant Physiology Processes Associated with “Plant-Plant Growth-Promoting Rhizobacteria” Bioassays for the Enhanced Heavy Metal Removal

  • Chapter
  • First Online:
Enhancing Cleanup of Environmental Pollutants

Abstract

Rhizoremediation considers the phytoextraction and soil bioaugmentation strategies and optimize the synergistic effect between plants and microorganisms with a physiological basis related only to plants. It is known that plant growth-promoting rhizobacteria (PGPR) affect the plants growth facilitating the uptake of nutrients and protecting them; this interaction has been attractive because the biotechnological potential of microorganisms for metal removal from soils and transport of them to the plants. In the following sections of this chapter, the authors give some analysis of the importance about the establishment of “plant-PGPR bioassays” as tools to compare the relationships between in vitro physiological characteristics of rhizobacteria isolated from plant metal accumulators and the plant’s physiology response, as follows: importance of siderophores as plant growth-promoting trait, evaluation of the in vitro production of siderophores by rhizobacteria, utility of the measurement of antioxidant activity in plants as indicator of heavy metal stress, and, finally, the description of cadmium effect by the antioxidant activity in two bioassays, with plant cell cultures and plantlets inoculated with a siderophore-producing bacteria (SPB).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander B, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, Berker KI, Özyurt D (2007) Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules 12:1496–1547

    Article  CAS  Google Scholar 

  • Arrigoni O, DeTullio MC (2002) Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta 1569:1

    Article  CAS  Google Scholar 

  • Avilés NL (2016) Caracterización fisiológica de rizobacterias aisladas de plantas metaloacumuladoras con potencial rizoremediador. Tesis de Licenciatura, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México

    Google Scholar 

  • Bashan Y (1986) Migration of the rhizosphere bacteria Azospirillum brasilense and Pseudomonas fluorescens towards wheat roots in the soil. J Gen Microbiol 132:3407–3414

    Google Scholar 

  • Bashan Y (1991) Air-borne transmission of the rhizosphere bacterium Azospirillum. Microb Ecol 22:257–269

    Article  CAS  Google Scholar 

  • Bashan Y, Carrillo A (1996) Bacterial inoculants for sustainable agriculture. In: Pérez-Moreno J, Ferrera-Cerrato R (eds) New horizons in agriculture: agroecology and sustainable development. Proceedings of the 2nd International Symposium on Agroecology, Sustainable Agriculture and Education, Postgraduados en Ciencias Agricolas, Montecillo, Mexico, p. 125–155

    Google Scholar 

  • Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  • Briat JF (2002) Metal ion activated oxidative stress and its control. In: Inz D, Montagu M (eds) Oxidative Stress in Plants. Taylor & Francis, London, pp 171–189

    Google Scholar 

  • Buyer JS, Sikora LJ, Chaney RL (1989) A new growth medium for the study of siderophore-mediated interactions. Biol Fertil Soils 8:97–101

    Article  Google Scholar 

  • Calabrase J, Blain R (2009) Hormesis and plant biology. Environ Pollut 157:42–48

    Article  Google Scholar 

  • Carlot M, Giacomini A, Casella S (2002) Aspects of plant microbe interactions in heavy metal polluted soil. Acta Biotechnol 22:13–20

    Article  CAS  Google Scholar 

  • Clijsters H, Cuypers A, Vangronsveld J (1999) Physiological responses to heavy metals in higher plants: defense against oxidative stress. Z Nat Sect CJ Biosci 54:730–734

    CAS  Google Scholar 

  • Dimkpa CO (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25

    Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modification of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application to bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  Google Scholar 

  • Gohari AR, Hajimehdipoor H, Saeidnia S, Ajani Y, Hadjiakhoondi D (2011) Antioxidant activity of some medicinal species using FRAP Assay. J Med Plants 10:54–60

    CAS  Google Scholar 

  • Guo H, Luo S, Chen L, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulator endophytic bacterium Bacillus sp. L14. Bior Technol 101:8599–8605

    Article  CAS  Google Scholar 

  • Herman EB (1996) Microbial contamination of plant tissue cultures. Recent Advances in Plant Tissue Culture IV. Agritech Cons., Inc., Shrub Oak

    Google Scholar 

  • Höflich G, Wiehe W, Kuhn G (1994) Plant growth stimulation by inoculation with symbiotic and association rhizosphere microorganisms. Experientia 50:23–28

    Article  Google Scholar 

  • Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856

    Article  CAS  Google Scholar 

  • Inze D, Van Montagu M (1995) Oxidative stress in plants. Curr Opin Biotechnol 6:153–158

    Article  CAS  Google Scholar 

  • Kelman D, Ben-Amotz A, Berman-Frank I (2009) Carotenoids provide the major antioxidant defense in the globally significant N2-fixing marine cyanobacterium Trichodesmium. Environ Microbiol 11:1897–1908

    Google Scholar 

  • Laguna HMF (2013) Caracterización fisiológica de rizobacterias aisladas de jales mineros por su capacidad de tolerancia a metales pesados. Tesis de Licenciatura, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México

    Google Scholar 

  • Lee-djärv A, Ivask A, Virta M (2008) Interplay of different transporters in the mediation of divalent heavy metal resistance in Pseudomonas putida KT2440. Am Soc Microbiol 198:2680–2689

    Google Scholar 

  • Melo MR, Flores NR, Murrieta SV, Tovar AR, Zúñiga AG, Hernández OF, Mendoza AP, Pérez NO, Dorantes AR (2011) Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy metals in contaminated soils. Intl J Environ Sci Technol 8:807–816

    Article  CAS  Google Scholar 

  • Marquez GB, Córdoba F (2009) Antioxidative system and oxidative stress markers in wild populations of Erica australis L. differentially exposed to pyrite mining activities. Environ Res 109: 968–974

    Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  CAS  Google Scholar 

  • Minaxi, Saxena J (2011) Efficacy of rhizobacterial strains encapsulated in nontoxic biodegradable gel matrices to promote growth and yield of wheat plants. App Soil Ecol 48:301–308

    Article  Google Scholar 

  • Murthy BNS, Vettakkorumakankav NN, KrishnaRaj S, Odumeru J, Saxena PK (1999) Characterization of somatic embryogenesis in Pelargonium × hortorum mediated by a bacterium. Plant Cell Rep 18: 607–613

    Google Scholar 

  • Neilands JB (1981) Microbial iron compounds. Annu Rev Biochem 50:715–731

    Article  CAS  Google Scholar 

  • Neilands JB (1983) Siderophores. In: Eichhorn L, Marzilla LG (eds) Advances in Inorganic Biochemistry. Elsevier, Amsterdam, pp 137–166

    Google Scholar 

  • Niki E (2002) Antioxidant activity: are we measuring it correctly?. Nutrition 18:524–525

    Article  Google Scholar 

  • Nowak J (1998) Benefits of in vitro biotization of plant tissue cultures with microbial inoculants. In Vitro Cell Dev Biol 34:122–131

    Article  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    Google Scholar 

  • Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ (2007) O-CAS, a fast and universal method for siderophore detection. J Microbiol Met 70:127–131

    Article  Google Scholar 

  • Pillay VK, Nowak J (1997) Inoculum density, temperature and genotype effects on epiphytic and endophytic colonization and in vitro growth promotion of tomato (Lycopersicon esculentum L.) by a pseudomonad bacterium. Can J Microbiol 43:354–361

    Article  CAS  Google Scholar 

  • Prior RL, Wu X, Schaich K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53:4290–4302

    Article  CAS  Google Scholar 

  • Pulido R, Bravo L, Saura-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Narasimha M, Prasad V, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Sánchez SMF (2013) Evaluación de la promoción del crecimiento vegetal y tolerancia a metales pesados de plantas de Axonopus affinis inoculadas con rizobacterias inmovilizadas. Tesis de Licenciatura, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México

    Google Scholar 

  • Sánchez SMF, Amora-Lazcano E, Rodríguez-Tovar A, Guerrero-Zúñiga LA, Rodríguez-Dorantes A (2014) Effect of the inoculation of Axonopus affinis plantlets with immobilized rhizobacteria exposed to cadmium. Afr J Microbiol Res 8:2886–2892

    Article  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:46–56

    Article  Google Scholar 

  • Sharma SS, Dietz KJ (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci 14:43–50

    Article  CAS  Google Scholar 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Article  Google Scholar 

  • Sung HS, Yong S, Nam WY (2001) CAS agar diffusion for the measurement of siderophores in biological fluids. J Microbiol Methods 44:89–95

    Article  Google Scholar 

  • Szöllösi R, Varga IS (2002) Total antioxidant power in some species of Labiatae (Adaptation of FRAP method). Acta Biol Szegediensis 46:125–127

    Google Scholar 

  • Szöllösi R, Varga IS, Erdei L, Mihalik E (2009) Cadmium-induced oxidative stress and antioxidative mechanisms in germinating Indian mustard (Brassica juncea L.) seeds. Ecotox Environ Saf 72:1337–1342

    Article  Google Scholar 

  • Tang W, Pasternak JJ, Glick BR (1995) Persistence in soil of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 and genetically manipulated derived strains. Can J Microbiol 41:445–451

    Article  CAS  Google Scholar 

  • Teintze M, Leong J (1981) Structure of pseudobactin A, a second siderophore from plant growth promoting Pseudomonas B 10. Biochemistry 20:6457–6462

    Article  CAS  Google Scholar 

  • Toledo SA (2012) Evaluación de la respuesta antioxidativa de tejido calloso de Epithelantha micromeris expuesto a un metal pesado e inoculado con rizobacterias. Tesis de Licenciatura, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México

    Google Scholar 

  • Trevors JT, van Elsas JD, Lee H, van Overbeek LS (1992) Use of alginate and other carriers for encapsulation of microbial cells for use in soil. Microb Releases 1:61–69

    Google Scholar 

  • Tung YT, Wu JH, KuoYH CST (2007) Antioxidant activities of natural phenolic compounds from Acacia confuse bark. Bioresour Technol 98:1120–1123

    Article  CAS  Google Scholar 

  • Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379–392

    Article  CAS  Google Scholar 

  • Yang YS, Wada K, Goto M, Futsuhara Y (1991) In vitro formation of nodular calli in soybean (Glycine max L) induced by co-cultivated Pseudomonas maltophilia. Japan J Breed 41:595–604

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Research Project SIP: 20131494 of the Secretaría de Investigación y Posgrado del Instituto Politécnico Nacional, for providing the facilities to carry out this work and also wish to thank for the fellowships from Comisión de Operación y Fomento de Actividades Académicas (COFAA, I.P.N.), EDI (Estímulo al Desempeño de los Investigadores, I.P.N.) and SNI-CONACYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Angélica Guerrero-Zúñiga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Rodríguez-Dorantes, A., Guerrero-Zúñiga, L.A. (2017). Plant Physiology Processes Associated with “Plant-Plant Growth-Promoting Rhizobacteria” Bioassays for the Enhanced Heavy Metal Removal. In: Anjum, N., Gill, S., Tuteja, N. (eds) Enhancing Cleanup of Environmental Pollutants. Springer, Cham. https://doi.org/10.1007/978-3-319-55426-6_12

Download citation

Publish with us

Policies and ethics