Skip to main content

Communication Technologies in IoT Networks

  • Chapter
  • First Online:
Internet of Things

Abstract

In this chapter, various types of IoT sensors and mode of communication between them is discussed. We also discuss cooperative mode of operation in sensor networks and outlines various topologies that can be utilized. Performance analysis of cooperative communication with respective to IoT networks is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim, H. Y. (2016). A study of a smart IT convergence framework in IoT. In Proceedings of the 9th International Conference on Security of Information and Networks, ACM (pp. 174–175).

    Google Scholar 

  2. Kelly, S. D. T., Suryadevara, N. K., & Mukhopadhyay, S. C. (2013). Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sensors Journal, 13, 3846–3853.

    Article  Google Scholar 

  3. Liposcak, Z., & Boskovic, M. (2013). Survey of smart metering communication technologies. In IEEE EUROCON (pp. 1391–1400).

    Google Scholar 

  4. Scaglione, A., & Hong, Y. (2003). Opportunistic large arrays: Cooperative trans-mission in wireless multi-hop ad hoc networks to reach far distances. IEEE Transactions on Signal Processing, 51(8), 2082–2092.

    Article  Google Scholar 

  5. Hassan, S. A., & Ingram, M. A. (2011). A quasi-stationary Markov chain model of a cooperative multi-hop linear network. IEEE Transactions on Wireless Communications, 10(7), 2306–2315.

    Article  Google Scholar 

  6. Hassan, S. A., & Ingram, M. A. (2012). Benefit of co-locating groups of nodes in cooperative line networks. IEEE Communications Letters, 16(2), 234–237.

    Article  Google Scholar 

  7. Alamouti, S. M. (1998). A simple transmitter diversity scheme for wireless communications. IEEE Journal on Selected Areas in Communications, 16(10), 1451–1458.

    Article  Google Scholar 

  8. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(7), 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  9. Syed, S. S., & Hassan, S. A. (2014). On the use of space-time bock codes for opportunistic large array network. In IEEE Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 1075–1080).

    Google Scholar 

  10. Afzal, A., & Hassan, S. A. (2014). Stochastic modeling of cooperative multi-Hop strip networks with fixed hop boundaries. IEEE Transactions on Wireless Communications, 13(8), 4146–4155.

    Article  Google Scholar 

  11. Sirkeci-Mergen, B., & Scaglione, A. (2007). Randomized distributed space-time coding for distributed cooperative communications. IEEE Transactions on Signal Processing, 55(10), 5003–5017.

    Article  MathSciNet  Google Scholar 

  12. Syed, S. S., Hassan, S. A., & Ali, S. (2015). Near-orthogonal randomized space-time block codes for multi-hop cooperative networks. IEEE Wireless Communications and Mobile Computing Conference (IWCMC) (pp. 840–845).

    Google Scholar 

  13. Ansari, R. I., & Hassan, S. A. (2014). Opportunistic large array with limited participation: An energy-efficient cooperative multi-hop network. In IEEE International Conference on Computing, Networking and Communications (ICNC) (pp. 831–835).

    Google Scholar 

  14. Kim, T., et. al., (2015). Physical layer and medium access control design in energy efficient sensor networks. IEEE Transactions on Industrial Informatics, 11(1), 2–15.

    Google Scholar 

  15. Cui, S., Goldsmith, A. J., & Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360.

    Article  Google Scholar 

  16. Wang, W., & Lau, V. K. N. (2014). Delay-aware cross-layer design for device-to-device communications in future cellular systems. IEEE Communications Magazine, 52(6), 133–139.

    Article  Google Scholar 

  17. Blum, J., & Eskandarian, A. (2013). A reliable link-layer protocol for robust and scalable intervehicle communications. IEEE Transactions on Intelligent Transportation Systems, 8(1), 413.

    Google Scholar 

  18. Aijaz, A., & Aghvami, A. H. (2015). Cognitive machine-to-machine communications for Internet-of-Things: A protocol stack perspective. IEEE Internet of Things Journal, 2(2), 103–112.

    Article  Google Scholar 

  19. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49, 101–107.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Hussain .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Hassan, S.A., Syed, S.S., Hussain, F. (2017). Communication Technologies in IoT Networks. In: Internet of Things. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-55405-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55405-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55404-4

  • Online ISBN: 978-3-319-55405-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics