Skip to main content

Developmental Origins of Self-regulation: Prenatal Maternal Stress and Psychobiological Development During Childhood

  • Chapter
  • First Online:
Book cover Parental Stress and Early Child Development

Abstract

In this chapter, we review empirical studies evaluating the role of prenatal maternal stress in shaping the developmental origins of self-regulation. We focus on evidence that elucidates ways in which prenatal maternal factors (i.e., stress exposure, anxiety, depression, and antidepressants) are associated with child self-regulation. Self-regulation is regarded as a core capacity reflected by neurobiological processes such as executive function and stress regulation that are central to setting pathways for mental and physical health across the early life span. While the conceptual framework of fetal programming for adverse developmental and behavioral outcomes has received substantial attention, this chapter will draw from a diverse literature elucidating the impact of early stress exposure on child outcomes for better and worse. With this in mind, we review the key determinants of self-regulation and examine the impact of prenatal maternal stress and in utero exposure to antidepressants, as an illustration of a particular molecular influence (i.e., prenatally altered serotonin levels), on long-term self-regulatory outcomes from early childhood to early adulthood. Human research will be the primary focus, although animal studies will be discussed for illustrative purposes. We conclude by summarizing the main findings overviewed in this chapter and discuss the implications for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander, J. K., Hillier, A., Smith, R. M., Tivarus, M. E., & Beversdorf, D. Q. (2007). Beta-adrenergic modulation of cognitive flexibility during stress. Journal of Cognitive Neuroscience, 19, 468–478.

    Article  PubMed  Google Scholar 

  • Allister, L., Lester, B. M., Carr, S., & Liu, J. (2001). The effects of maternal depression on fetal heart rate response to vibroacoustic stimulation. Developmental Neuropsychology, 20, 639–651.

    Google Scholar 

  • Ansorge, M. S., Hen, R., & Gingrich, J. A. (2007). Neurodevelopmental origins of depressive disorders. Current Opinion in Pharmacology, 7, 8–17.

    Article  PubMed  Google Scholar 

  • Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Review Neuroscience, 10, 410–422.

    Article  Google Scholar 

  • Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2006). Gene-environment interaction of the dopamine D4 receptor (DRD4) and observed maternal insensitivity predicting externalizing behavior in preschoolers. Developmental Psychobiology, 48, 406–409.

    Google Scholar 

  • Barden, N., Reul, J. M., & Holsboer, F. (1995). Do antidepressants stabilize mood through actions on the hypothalamic-pituitary-adrenocortical system? Trends in Neuroscience, 18, 6–11.

    Article  Google Scholar 

  • Barker, D. J. (2003). The developmental origins of adult disease. European Journal of Epidemiology, 18, 733–736.

    Article  PubMed  Google Scholar 

  • Barrett, J., & Fleming, A. (2011). Annual research review: All mothers are not created equal: Neural and psychobiological perspectives on mothering and the importance of individual differences. Journal of Child Psychology and Psychiatry, 52, 368–397.

    Article  PubMed  Google Scholar 

  • Baumeister, R. F., & Vohs, K. D. (Eds.). (2004). Handbook of self-regulation: Research, theory, and applications. New York: Guilford Press.

    Google Scholar 

  • Bell, M. A., & Deater-Deckard, K. (2007). Biological systems and the development of self-regulation: Integrating behavior, genetics, and psychophysiology. Journal of Developmental and Behavioral Pediatrics, 28, 409–420.

    Article  PubMed  Google Scholar 

  • Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885–908.

    Article  PubMed  Google Scholar 

  • Bennett, H. A., Einarson, A., Taddio, A., Koren, G., & Einarson, T. R. (2004). Prevalence of depression during pregnancy: Systematic review. Obstetrics and Gynecology, 103, 698–709.

    Article  PubMed  Google Scholar 

  • Bernier, A., Carlson, S. M., & Whipple, N. (2010). From external regulation to self-regulation: Early parenting precursors of young children’s executive functioning. Child Development, 81, 326–339.

    Article  PubMed  Google Scholar 

  • Beydoun, H., & Saftlas, A. F. (2008). Physical and mental health outcomes of prenatal maternal stress in human and animal studies: A review of recent evidence. Paediatric and Perinatal Epidemiology, 290, 595–596.

    Google Scholar 

  • Birtchnell, J., Evans, C., & Kennard, J. (1988). The total score of the crown-crisp experiential index: A useful and valid measure of psychoneurotic pathology. British Journal of Medical Psychology, 61, 255–266.

    Article  PubMed  Google Scholar 

  • Blair, C. (2002). School readiness: Integrating cognition and emotion in a neurobiological conceptualization of children’s functioning at school entry. American Psychologist, 57, 111–127.

    Article  PubMed  Google Scholar 

  • Blair, C., Granger, D., & Peters Razza, R. (2005). Cortisol reactivity is positively related to executive function in preschool children attending head start. Child Development, 76, 554–567.

    Article  PubMed  Google Scholar 

  • Blair, C., Granger, D. A., Willoughby, M., Mills-Koonce, R., Cox, M., Greenberg, M. T., … & F. L. P. I. (2011). Salivary cortisol mediates effects of poverty and parenting on executive functions in early childhood. Child Development, 82, 1970–1984.

    Google Scholar 

  • Blair, C., & Razza, R. P. (2007). Relating effortful control, executive function, and false belief understanding to emerging math and literacy ability in Kindergarten. Child Development, 78, 647–663.

    Article  PubMed  Google Scholar 

  • Bonnin, A., & Levitt, P. (2011). Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain. Neuroscience, 197, 1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boukhris, T., Sheehy, O., Mottron, L., & Berard, A. (2016). Antidepressant use during pregnancy and the risk of autism spectrum disorder in children. JAMA Pediatrics, 170, 117–124.

    Article  PubMed  Google Scholar 

  • Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: An evolutionary-developmental theory of the origins and functions of stress reactivity. Developmental Psychopathology, 17, 271–301.

    Article  Google Scholar 

  • Buchmann, A. F., Zohsel, K., Blomeyer, D., Hohm, E., Hohmann, S., Jennen-Steinmetz, C., et al. (2014). Interaction between prenatal stress and dopamine D4 receptor genotype in predicting aggression and cortisol levels in young adults. Psychopharmacology (Berl), 231, 3089–3097.

    Article  Google Scholar 

  • Buss, C., Davis, E. P., Hobel, C. J., & Sandman, C. A. (2011). Maternal pregnancy-specific anxiety is associated with child executive function at 6–9 years age. Stress, 14, 665–676.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buss, C., Davis, E. P., Muftuler, L. T., Head, K., & Sandman, C. A. (2010). High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children. Psychoneuroendocrinology, 35, 141–153.

    Article  PubMed  PubMed Central  Google Scholar 

  • Calkins, S. D., & Howse, R. B. (2004). Individual differences in self-regulation: Implications for childhood adjustment. In P. Philippot & R. S. Feldman (Eds.), The regulation of emotion (pp. 307–332). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Calkins, S. D., & Williford, A. P. (2009). Taming the terrible twos: Self-regulation and school readiness. In O. A. Barbarin & B. H. Wasik (Eds.), Handbook of child development and early education: Research to practice (pp. 172–198). New York: Guilford Press.

    Google Scholar 

  • Charney, D. S., & Manji, H. K. (2004). Life stress, genes, and depression: Multiple pathways lead to increased risk and new opportunities for intervention. Science Signaling, 2004, 5.

    Google Scholar 

  • Chrousos, G. P. (2000). The role of stress and the hypothalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: Neuro-endocrine and target tissue-related causes. International Journal of Obesity Related Metabolic Disorders, 24(Suppl 2), S50–S55.

    Article  PubMed  Google Scholar 

  • Chugani, D. C., Niimura, K., Chaturvedi, S., Muzik, O., Fakhouri, M., Lee, M. L., et al. (1999). Increased brain serotonin synthesis in migraine. Neurology, 53, 1473–1479.

    Article  PubMed  Google Scholar 

  • Clements, C. C., Castro, V. M., Blumenthal, S. R., Rosenfield, H. R., Murphy, S. N., Fava, M., et al. (2015). Prenatal antidepressant exposure is associated with risk for attention-deficit hyperactivity disorder but not autism spectrum disorder in a large health system. Molecular Psychiatry, 20, 727–734.

    Article  PubMed  Google Scholar 

  • Cohen, L. S., Altshuler, L. L., Harlow, B. L., Nonacs, R., Newport, D. J., Viguera, A. C., et al. (2006). Relapse of major depression during pregnancy in women who maintain or discontinue antidepressant treatment. JAMA, 295, 499–507.

    Article  PubMed  Google Scholar 

  • Croen, L. A., Grether, J. K., Yoshida, C. K., Odouli, R., & Hendrick, V. (2011). Antidepressant use during pregnancy and childhood autism spectrum disorders. Archives of General Psychiatry, 68, 1104–1112.

    Article  PubMed  Google Scholar 

  • Davidson, S., Prokonov, D., Taler, M., Maayan, R., Harell, D., Gil-Ad, I., et al. (2009). Effect of exposure to selective serotonin reuptake inhibitors in utero on fetal growth: Potential role for the IGF-I and HPA axes. Pediatric Research, 65, 236–241.

    Article  PubMed  Google Scholar 

  • Davis, E. P., Glynn, L. M., Waffarn, F., & Sandman, C. A. (2011). Prenatal maternal stress programs infant stress regulation. Journal of Child Psychology and Psychiatry, 52, 119–129.

    Article  PubMed  Google Scholar 

  • de Bruijn, A. T., van Bakel, H. J., & van Baar, A. L. (2009). Sex differences in the relation between prenatal maternal emotional complaints and child outcome. Early Human Development, 85, 319–324.

    Article  PubMed  Google Scholar 

  • de Kloet, E. R., Oitzl, M. S., & Joëls, M. (1999). Stress and cognition: Are corticosteroids good or bad guys? Trends in Neurosciences, 22, 422–426.

    Article  PubMed  Google Scholar 

  • de Weerth, C., & Buitelaar, J. K. (2005). Physiological stress reactivity in human pregnancy: A review. Neuroscience and Biobehavioral Reviews, 29, 295–312.

    Article  PubMed  Google Scholar 

  • Deater-Deckard, K., Wang, Z., Chen, N., & Bell, M. A. (2012). Maternal executive function, harsh parenting, and child conduct problems. Journal of Child Psychology and Psychiatry, 53, 1084–1091.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diamond, A., & Lee, K. (2011). Interventions shown to aid executive function development in children 4 to 12 years old. Science, 333, 959–964.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, xx, xx.

    Google Scholar 

  • DiPietro, J. A. (2012). Maternal stress in pregnancy: Considerations for fetal development. Journal of Adolescent Health, 51, S3–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • DiPietro, J. A., Hodgson, D. M., Costigan, K. A., & Johnson, T. R. (1996). Fetal antecedents of infant temperament. Child Development, 67, 2568–2583.

    Google Scholar 

  • DiPietro, J. A., Novak, M. F., Costigan, K. A., Atella, L. D., & Reusing, S. P. (2006). Maternal psychological distress during pregnancy in relation to child development at age two. Child Development, 77, 573–587.

    Article  PubMed  Google Scholar 

  • Doom, J. R., Cicchetti, D., & Rogosch, F. A. (2014). Longitudinal patterns of cortisol regulation differ in maltreated and nonmaltreated children. Journal of the American Academy of Child and Adolescent Psychiatry, 53, 1206–1215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunkel Schetter, C. (2011). Psychological science on pregnancy: Stress processes, biopsychosocial models, and emerging research issues. Annual Review of Psychology, 62, 531–558.

    Article  PubMed  Google Scholar 

  • Dunkel Schetter, C., & Tanner, L. (2012). Anxiety, depression and stress in pregnancy: Implications for mothers, children, research, and practice. Current Opinion in Psychiatry, 25, 141–148.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van IJzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory. Development and Psychopathology, 23, 7–28.

    Google Scholar 

  • Entringer, S., Buss, C., Kumsta, R., Hellhammer, D. H., Wadhwa, P. D., & Wuest, S. (2009a). Prenatal psychosocial stress exposure is associated with subsequent working memory performance in young women. Behavioral Neuroscience, 123, 886–893.

    Article  PubMed  PubMed Central  Google Scholar 

  • Entringer, S., Buss, C., & Wadhwa, P. D. (2015). Prenatal stress, development, health and disease risk: A psychobiological perspective—2015 Curt Richter Award Paper. Psychoneuroendocrinology, 62, 366–375.

    Article  PubMed  PubMed Central  Google Scholar 

  • Entringer, S., Kumsta, R., Hellhammer, D. H., Wadhwa, P. D., & Wust, S. (2009b). Prenatal exposure to maternal psychosocial stress and HPA axis regulation in young adults. Hormones and Behavior, 55, 292–298.

    Article  PubMed  Google Scholar 

  • Firk, C., & Markus, C. R. (2007). Serotonin by stress interaction: A susceptibility factor for the development of depression? Journal of Psychopharmacology, 21, 538–544.

    Article  PubMed  Google Scholar 

  • Francis, D. D., Szegda, K., Campbell, G., Martin, W. D., & Insel, T. R. (2003). Epigenetic sources of behavioral differences in mice. Nature Neuroscience, 6, 445–446.

    PubMed  Google Scholar 

  • Fuller, R. W. (1996). Mechanisms and functions of serotonin neuronal systems: Opportunities for neuropeptide interactions. Annals of the New York Academy of Sciences, 780, 176–184.

    Article  PubMed  Google Scholar 

  • Fuster, J. M. (2008). The prefrontal cortex (4th ed.). London: Academic Press.

    Google Scholar 

  • Gaspar, P., Cases, O., & Maroteaux, L. (2003). The developmental role of serotonin: News from mouse molecular genetics. Nature Review Neuroscience, 4, 1002–1012.

    Article  Google Scholar 

  • Giannakoulopoulos, X., Teixeira, J., Fisk, N., & Glover, V. (1999). Human fetal and maternal noradrenaline responses to invasive procedures. Pediatric Research, 45, 494–499.

    Article  PubMed  Google Scholar 

  • Gillespie, C. F., & Nemeroff, C. B. (2005). Hypercortisolemia and depression. Psychosomatic Medicine, 67(Suppl 1), S26–28.

    Article  PubMed  Google Scholar 

  • Glover, V. (2011). Annual research review: Prenatal stress and the origins of psychopathology: An evolutionary perspectiv. Journal of Child Psychology and Psychiatry, 52, 356–367.

    Article  PubMed  Google Scholar 

  • Glover, V., O’Connor, T. G., & O’Donnell, K. (2010). Prenatal stress and the programming of the HPA axis. Neuroscience and Biobehavioral Reviews, 35, 17–22.

    Article  PubMed  Google Scholar 

  • Gluckman, P., & Hanson, M. (2005). The fetal matrix: Evolution, development and disease. New York: Cambridge University Press.

    Google Scholar 

  • Glynn, L. M., Schetter, C. D., Hobel, C. J., & Sandman, C. A. (2008). Pattern of perceived stress and anxiety in pregnancy predicts preterm birth. Health Psychology, 27, 43–51.

    Article  PubMed  Google Scholar 

  • Gunnar, M. R., & Quevedo, L. (2007). The neurobiology of stress and development. Annual Review of Psychology, 58, 145–173.

    Article  PubMed  Google Scholar 

  • Hanley, G. E., Brain, U., & Oberlander, T. F. (2015). Prenatal exposure to serotonin reuptake inhibitor antidepressants and childhood behavior. Pediatric Research, 78, 174–180.

    Article  PubMed  Google Scholar 

  • Hanley, G. E., & Oberlander, T. F. (2012). Neurodevelopmental outcomes following prenatal exposure to serotonin reuptake inhibitor antidepressants: A ‘‘social teratogen’’ or moderator of developmental risk? Birth Defects Research (Part A), 94, 651–659.

    Article  Google Scholar 

  • Hilli, J., Heikkinen, T., Rontu, R., Lehtimaki, T., Kishida, I., Aklillu, E., et al. (2009). MAO-A and COMT genotypes as possible regulators of perinatal serotonergic symptoms after in utero exposure to SSRIs. European Neuropsychopharmacology, 19, 363–370.

    Article  PubMed  Google Scholar 

  • Homberg, J. R., & Contet, C. (2009). Deciphering the interaction of the corticotropin-releasing factor and serotonin brain systems in anxiety-related disorders. Journal of Neuroscience, 29, 13743–13745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Homberg, J. R., Schubert, D., & Gaspar, P. (2010). New perspectives on the neurodevelopmental effects of SSRIs. Trends in Pharmacological Sciencies, 31, 60–65.

    Article  Google Scholar 

  • Howard, L. M., Molyneaux, E., Dennis, C.-L., Rochat, T., Stein, A., & Milgrom, J. (2014). Non-psychotic mental disorders in the perinatal period. The Lancet, 384, 1775–1788.

    Article  Google Scholar 

  • Hughes, C. (2011). Changes and challenges in 20 years of research into the development of executive functions. Infant and Child Development, 20, 251–271.

    Article  Google Scholar 

  • Hughes, C., & Ensor, R. (2011). Individual differences in growth in executive function across the transition to school predict externalizing and internalizing behaviors and self-perceived academic success at 6 years of age. Journal of Experimental Child Psychology, 108, 663–676.

    Article  PubMed  Google Scholar 

  • Huizink, A. C., Robles de Medina, P. G., Mulder, E. J., Visser, G. H., & Buitelaar, J. K. (2003). Stress during pregnancy is associated with developmental outcome in infancy. Journal of Child Psychology and Psychiatry, 44, 810–818.

    Article  PubMed  Google Scholar 

  • Ishiwata, H., Shiga, T., & Okado, N. (2005). Selective serotonin reuptake inhibitor treatment of early postnatal mice reverses their prenatal stress-induced brain dysfunction. Neuroscience, 133, 893–901.

    Article  PubMed  Google Scholar 

  • Kinsella, M. T., & Monk, C. (2009). Impact of maternal stress, depression & anxiety on fetal neurobehavioral development. Clinical Obstetrics and Gynecology, 52, 425–440.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lagopoulos, J., Hermens, D. F., Naismith, S. L., Scott, E. M., & Hickie, I. B. (2012). Frontal lobe changes occur early in the course of affective disorders in young people. BMC Psychiatry, 12, 1–7.

    Article  Google Scholar 

  • Laine, K., Heikkinen, T., Ekblad, U., & Kero, P. (2003). Effects of exposure to selective serotonin reuptake inhibitors during pregnancy on serotonergic symptoms in newborns and cord blood monoamine and prolactin concentrations. Archives of General Psychiatry, 60, 720–726.

    Article  PubMed  Google Scholar 

  • Laplante, P., Diorio, J., & Meaney, M. J. (2002). Serotonin regulates hippocampal glucocorticoid receptor expression via a 5-HT7 receptor. Brain Research. Developmental Brain Research, 139, 199–203.

    Article  PubMed  Google Scholar 

  • Lazarus, R. S. (1991). Progress on a cognitive-motivational-relational theory of emotion. American Psychologist, 46, 819–834.

    Article  PubMed  Google Scholar 

  • Leight, K. L., Fitelson, E. M., Weston, C. A., & Wisner, K. L. (2010). Childbirth and mental disorders. International Review of Psychiatry, 22, 453–471.

    Article  PubMed  Google Scholar 

  • Levitt, P. (2003). Structural and functional maturation of the developing primate brain. Journal of Pediatrics, 143, 35–45.

    Article  Google Scholar 

  • Lowry, C. A. (2002). Functional subsets of serotonergic neurones: Implications for control of the hypothalamic-pituitary-adrenal axis. Journal of Neuroendocrinology, 14, 911–923.

    Article  PubMed  Google Scholar 

  • Lupien, S. J., Gillin, C. J., & Hauger, R. L. (1999). Working memory is more sensitive than declarative memory to the acute effects of corticosteroids: A dose-response study in humans. Behavioral Neuroscience, 113, 420–430.

    Article  PubMed  Google Scholar 

  • Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T. E. (2007). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain and Cognition, 65, 209–237.

    Article  PubMed  Google Scholar 

  • Malm, H., Brown, A. S., Gissler, M., Gyllenberg, D., Hinkka-Yli-Salomäki, S., McKeague, I. W., et al. (2016). Gestational exposure to selective serotonin reuptake inhibitors and offspring psychiatric disorders: A national register-based study. Journal of the American Academy of Child and Adolescent Psychiatry, 55, 359–366.

    Article  PubMed  PubMed Central  Google Scholar 

  • Man, K. K., Tong, H. H., Wong, L. Y., Chan, E. W., Simonoff, E., & Wong, I. C. (2015). Exposure to selective serotonin reuptake inhibitors during pregnancy and risk of autism spectrum disorder in children: A systematic review and meta-analysis of observational studies. Neuroscience and Biobehavioral Reviews, 49, 82–89.

    Article  PubMed  Google Scholar 

  • McEwen, B. S. (2000). Allostasis and allostatic load: Implications for neuropsychopharmacology. Neuropsychopharmacology, 22, 108–124.

    Article  PubMed  Google Scholar 

  • McEwen, B. S. (2005). Glucocorticoids, depression, and mood disorders: Structural remodeling in the brain. Metabolism, 54(5 Suppl 1), 20–23.

    Article  PubMed  Google Scholar 

  • McEwen, B. S., & Morrison, J. H. (2013). The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron, 79, 16–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • McEwen, B. S., & Wingfield, J. C. (2003). The concept of allostasis in biology and biomedicine. Hormones and Behavior, 43, 2–16.

    Article  PubMed  Google Scholar 

  • Mennes, M., Stiers, P., Lagae, L., & Van den Bergh, B. R. H. (2006). Long-term cognitive sequelae of antenatal maternal anxiety: Involvement of the orbitofrontal cortex. Neuroscience and Biobehavioral Reviews, 30, 1078–1086.

    Article  PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  PubMed  Google Scholar 

  • Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133, 25–45.

    Article  PubMed  Google Scholar 

  • Misri, S., Reebye, P., Kendrick, K., Carter, D., Ryan, D., Grunau, R. E., et al. (2006). Internalizing behaviors in 4-year-old children exposed in utero to psychotropic medications. American Journal of Psychiatry, 163, 1026–1032.

    Article  PubMed  Google Scholar 

  • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., & Howerter, A. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100.

    Article  PubMed  Google Scholar 

  • Moffitt, T. E., Arseneault, L., Belsky, D., Dickson, N., Hancox, R. J., Harrington, H., et al. (2011). A gradient of childhood self-control predicts health, wealth, and public safety. Proceedings of the National Academy of Sciences of the United States of America, 108, 2693–2698.

    Article  PubMed  PubMed Central  Google Scholar 

  • Monk, C., Fifer, W. P., Myers, M. M., Sloan, R. P., Trien, L., & Hurtado, A. (2000). Maternal stress responses and anxiety during pregnancy: Effects on fetal heart rate. Developmental Psychobiology, 36, 67–77.

    Google Scholar 

  • Moses-Kolko, E. L., Bogen, D., Perel, J., Bregar, A., Uhl, K., Levin, B., et al. (2005). Neonatal signs after late in utero exposure to serotonin reuptake inhibitors: Literature review and implications for clinical applications. JAMA, 293, 2372–2383.

    Article  PubMed  Google Scholar 

  • Mulder, E. J., Ververs, F. F., de Heus, R., & Visser, G. H. (2011). Selective serotonin reuptake inhibitors affect neurobehavioral development in the human fetus. Neuropsychopharmacology, 36, 1961–1971.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murmu, M. S., Salomon, S., Biala, Y., Weinstock, M., Braun, K., & Bock, J. (2006). Changes of spine density and dendritic complexity in the prefrontal cortex in offspring of mothers exposed to stress during pregnancy. European Journal of Neuroscience, 24, 1477–1487.

    Article  PubMed  Google Scholar 

  • Murphy, P. A. (2010). Origins: How the nine months before birth shape the rest of our lives. New York: Free Press.

    Google Scholar 

  • Neuenschwander, R., Röthlisberger, M., Cimeli, P., & Roebers, C. M. (2012). How do different aspects of self-regulation predict successful adaptation to school? Journal of Experimental Child Psychology, 113, 353–371.

    Article  PubMed  Google Scholar 

  • O’Connor, T. G., Ben-Shlomo, Y., Heron, J., Golding, J., Adams, D., & Glover, V. (2005). Prenatal anxiety predicts individual differences in cortisol in pre-adolescent children. Biological Psychiatry, 58, 211–217.

    Article  PubMed  Google Scholar 

  • O’Connor, T. G., Heron, J., Golding, J., Beveridge, M., & Glover, V. (2002). Maternal antenatal anxiety and children’s behavioural/emotional problems at 4 years: Report from the Avon longitudinal study of parents and children. British Journal of Psychiatry, 180, 502–508.

    Article  PubMed  Google Scholar 

  • O’Connor, T. G., Heron, J., Golding, J., Glover, V., & Team, T. A. S. (2003). Maternal anxiety and behavioural/emotional problems in children: A test of a programming hypothesis. Journal of Child Psychology and Psychiatry, 44, 1025–1036.

    Article  PubMed  Google Scholar 

  • O’Donnell, K. J., Glover, V., Jenkins, J., Browne, D., Ben-Shlomo, Y., Golding, J., et al. (2013). Prenatal maternal mood is associated with altered diurnal cortisol in adolescence. Psychoneuroendocrinology, 38, 1630–1638.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberlander, T. F., Gingrich, J. A., & Ansorge, M. S. (2009). Sustained neurobehavioral effects of exposure to SSRI antidepressants during development: Molecular to clinical evidence. Clinical Pharmacology and Therapeutics, 86, 672–677.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberlander, T. F., Grunau, R., Mayes, L., Riggs, W., Rurak, D., Papsdorf, M., et al. (2008). Hypothalamicpituitary-adrenal (HPA) axis function in 3-month old infants with prenatal selective serotonin reuptake inhibitor (SSRI) antidepressant exposure. Early Human Development, 84, 689–697.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oberlander, T. F., Grunau, R. E., Fitzgerald, C., Ellwood, A. L., Misri, S., Rurak, D., et al. (2002). Prolonged prenatal psychotropic medication exposure alters neonatal acute pain response. Pediatric Research, 51, 443–453.

    Article  PubMed  Google Scholar 

  • Oberlander, T. F., Grunau, R. E., Fitzgerald, C., Papsdorf, M., Rurak, D., & Riggs, W. (2005). Pain reactivity in 2-month-old infants after prenatal and postnatal serotonin reuptake inhibitor medication exposure. Pediatrics, 115, 411–425.

    Article  PubMed  Google Scholar 

  • Oberlander, T. F., Misri, S., Fitzgerald, C. E., Kostaras, X., Rurak, D., & Riggs, W. (2004). Pharmacologic factors associated with transient neonatal symptoms following prenatal psychotropic medication exposure. Journal of Clinical Psychiatry, 65, 230–237.

    Article  PubMed  Google Scholar 

  • Oberlander, T. F., Reebye, P., Misri, S., Papsdorf, M., Kim, J., & Grunau, R. (2007). Externalizing and attentional behaviors in children of depressed mothers treated with a selective serotonin reuptake inhibitor antidepressant during pregnancy. Archives of Pediatrics and Adolescent Medicine, 161, 22–29.

    Article  PubMed  Google Scholar 

  • Oberlander, T. F., Warburton, W., Misri, S., Aghajanian, J., & Hertzman, C. (2006). Neonatal outcomes after prenatal exposure to selective serotonin reuptake inhibitor antidepressants and maternal depression using population-based linked health data. Archives of General Psychiatry, 63, 898–906.

    Article  PubMed  Google Scholar 

  • Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9, 242–249.

    Article  PubMed  Google Scholar 

  • Pawluski, J. L., Galea, L. A. M., Brain, U., Papsdorf, M., & Oberlander, T. F. (2009). Neonatal S100B protein levels after prenatal exposure to selective serotonin reuptake inhibitors. Pediatrics, 124, e662–e670.

    Article  PubMed  Google Scholar 

  • Pearson, R. M., Bornstein, M. H., Cordero, M., Scerif, G., Mahedy, L., Evans, J., et al. (2016). Maternal perinatal mental health and offspring academic achievement at age 16: The mediating role of childhood executive function. Journal of Child Psychology and Psychiatry, 57, 491–501.

    Article  PubMed  Google Scholar 

  • Peters, D. A. (1990). Maternal stress increases fetal brain and neonatal cerebral cortex 5-hydroxytryptamine synthesis in rats: A possible mechanism by which stress influences brain development. Pharmacology, Biochemestry, and Behavior, 35, 943–947.

    Article  Google Scholar 

  • Pluess, M., Velders, F. P., Belsky, J., van IJzendoorn, M. H., Bakermans-Kranenburg, M. J., Jaddoe, V. W., … Tiemeier, H. (2011). Serotonin transporter polymorphism moderates effects of prenatal maternal anxiety on infant negative emotionality. Biological Psychiatry, 69, 520–525.

    Google Scholar 

  • Pruessner, J. C., Dedovic, K., Khalili-Mahani, N., Engert, V., Pruessner, M., Buss, C., et al. (2008). Deactivation of the limbic system during acute psycho-social stress: Evidence from positron emission tomography and functional magnetic resonance imaging studies. Biological Psychiatry, 63, 234–240.

    Article  PubMed  Google Scholar 

  • Rai, D., Lee, B. K., Dalman, C., Golding, J., Lewis, G., & Magnusson, C. (2013). Parental depression, maternal antidepressant use during pregnancy, and risk of autism spectrum disorders: Population based case-control study. British Medical Journal, 349, f2059.

    Article  Google Scholar 

  • Ramage, A. G. (2001). Central cardiovascular regulation and 5-hydroxytryptamine receptors. Brain Research Bulletin, 56, 425–439.

    Article  PubMed  Google Scholar 

  • Rurak, D., Lim, K., Sanders, A., Brain, U., Riggs, W., & Oberlander, T. F. (2011). Third trimester fetal heart rate and Doppler middle cerebral artery blood flow velocity characteristics during prenatal selective serotonin reuptake inhibitor exposure. Pediatric Research, 70, 96–101.

    Article  PubMed  Google Scholar 

  • Sanchez, M. M., Young, L. J., Plotsky, P. M., & Insel, T. R. (2000). Distribution of corticosteroid receptors in the rhesus brain. The Journal of Neuroscience, 20, 4657–4568.

    PubMed  Google Scholar 

  • Sandman, C. A., Buss, C., Head, K., & Davis, E. P. (2015). Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood. Biological Psychiatry, 77, 324–334.

    Article  PubMed  Google Scholar 

  • Sandman, C. A., Davis, E., & Glynn, L. (2012). Prescient human fetuses thrive. Psychological Science, 23, 93–100.

    Article  PubMed  Google Scholar 

  • Sapolsky, R. M., Uno, H., Rebert, C. S., & Finch, C. E. (1990). Hippocampal damage associated with prolonged glucocorticoid exposure in primates. Journal of Neuroscience, 10, 2897–2902.

    PubMed  Google Scholar 

  • Schneider, M. L., Roughton, E. C., Koehler, A. J., & Lubach, G. R. (1999). Growth and development following prenatal stress exposure in primates: An examination of ontogenetic vulnerability. Child Development, 70, 263–274.

    Article  PubMed  Google Scholar 

  • Seckl, J. R., & Meaney, M. J. (1993). Early life events and later development of ischaemic heart disease. Lancet, 342, 1236.

    Article  PubMed  Google Scholar 

  • Simons, S. S. H., Beijers, R., Cillessen, A. H. N., & de Weerth, C. (2015). Development of the cortisol circadian rhythm in the light of stress early in life. Psychoneuroendocrinology, 62, 292–300.

    Article  PubMed  Google Scholar 

  • Sodhi, M. S., & Sanders-Bush, E. (2004). Serotonin and brain development. International Revue of Neurobiology, 59, 111–174.

    Article  Google Scholar 

  • Spielberger, C. D., Gorsuch, R. L., & Lushene, R. E. (1970). STAI manual for the state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press.

    Google Scholar 

  • Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20, 327–348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sundstrom, E., Kolare, S., Souverbie, F., Samuelsson, E. B., Pschera, H., Lunell, N. O., et al. (1993). Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester. Brain Research. Developmental Brain Research, 75, 1–12.

    Article  PubMed  Google Scholar 

  • Takahashi, H., Nakashima, S., Ohama, E., Takeda, S., & Ikuta, F. (1986). Distribution of serotonin-containing cell bodies in the brainstem of the human fetus determined with immunohistochemistry using antiserotonin serum. Brain Development, 8, 355–365.

    Article  PubMed  Google Scholar 

  • Talge, N. M., Neal, C., & Glover, V. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry and Allied Disciplines, 48, 245–261.

    Article  Google Scholar 

  • Tollenaar, M. S., Beijers, R., Jansen, J., Riksen-Walraven, J. M. A., & de Weerth, C. (2011). Maternal prenatal stress and cortisol reactivity to stressors in human infants. Stress, 14, 53–65.

    Article  PubMed  Google Scholar 

  • Tronick, E. Z., & Weinberg, M. K. (1997). Depressed mothers and infants: Failure to form dyadic states of consciousness. In: L. Murray & P. J. Cooper (Eds.), Postpartum depression and child development (pp. 54–81). New York: Guilford Press.

    Google Scholar 

  • Van den Bergh, B. R. H., & Marcoen, A. (2004). High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems, and anxiety in 8- and 9-year-olds. Child Development, 75, 1085–1097.

    Article  PubMed  Google Scholar 

  • Van den Bergh, B. R. H., Mennes, M., Oosterlaan, J., Stevens, V., Stiers, P., Marcoen, A., & Lagae, L. (2005). High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neuroscience and Biobehavioral Reviews, 29, 259–269.

    Google Scholar 

  • Van den Bergh, B. R. H., Mennes, M., Stevens, V., Van der Meere, J., Börger, N., Stiers, P., et al. (2006). ADHD deficit as measured in adolescent boys with a continuous performance task is related to antenatal maternal anxiety. Pediatric Research, 59, 78–82.

    Article  PubMed  Google Scholar 

  • Van den Bergh, B. R. H., Mulder, E. J., Mennes, M., & Glover, V. (2005b). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms: A review. Neuroscience and Biobehavioral Reviews, 29, 237–258.

    Article  PubMed  Google Scholar 

  • Van den Bergh, B. R. H., Van Calster, B., Smits, T., Van Huffel, S., & Lagae, L. (2008). Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood. Neuropsychopharmacology, 33, 536–535.

    Article  PubMed  Google Scholar 

  • Vänskä, M., Punamäki, R.-L., Lindblom, J. K., Tolvanen, A., Flykt, M., Unkila-Kallio, L., … Tiitinen, A. (2015). Timing of early maternal mental health and child cortisol regulation. Infant and Child Development, (early view- online version), 25, 461–483. doi:10.1002/icd.194

  • Weikum, W. M., Brain, U., Chau, C. M. Y., Grunau, R. E., Boyce, T., Diamond, A., et al. (2013). Prenatal serotonin reuptake inhibitor (SRI) antidepressant exposure and serotonin transporter promoter genotype (SLC6A4) influence executive functions at 6 years of age. Frontiers in Cellular Neuroscience, 7, 1–12.

    Article  Google Scholar 

  • Weikum, W. M., Oberlander, T. F., Hensch, T. K., & Werker, J. F. (2012). Prenatal exposure to antidepressants and depressed maternal mood alter trajectory of infant speech perception. Proceedings of the National Academy of Sciences, 109, 17221–17227.

    Article  Google Scholar 

  • Weinberg, M. K., & Tronick, E. Z. (1998). The impact of maternal psychiatric illness on infant development. Journal of Clinical Psychiatry, 59(Suppl 2), 53–61.

    PubMed  Google Scholar 

  • Weinstock, L., Cohen, L. S., Bailey, J. W., Blatman, R., & Rosenbaum, J. F. (2001). Obstetrical and neonatal outcome following clonazepam use during pregnancy: A case series. Psychotherapy and Psychosomatics, 70, 158–162.

    Article  PubMed  Google Scholar 

  • Weinstock, M. (2001). Alterations induced by gestational stress in brain morphology and behaviour of the offspring. Progress in Neurobiology, 65, 427–451.

    Article  PubMed  Google Scholar 

  • Weinstock, M. (2008). The long-term behavioural consequences of prenatal stress. Neuroscience and Biobehavioral Reviews, 32, 1073–1086.

    Article  PubMed  Google Scholar 

  • Whitaker-Azmitia, P. M. (2001). Serotonin and brain development: Role in human developmental diseases. Brain Research Bulletin, 56, 479–485.

    Article  PubMed  Google Scholar 

  • Whitaker-Azmitia, P. M., Druse, M., Walker, P., & Lauder, J. M. (1996). Serotonin as a developmental signal. Behavioral Brain Research, 73, 19–29.

    Article  Google Scholar 

  • Zeskind, P. S., & Stephens, L. E. (2004). Maternal selective serotonin reuptake inhibitor use during pregnancy and newborn neurobehavior. Pediatrics, 113, 368–375.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a postdoctoral fellowship from Kids Brain Health Network (formerly NeuroDevNet)/Brain Canada/Health Canada to R.N. T.F.O is the R. Howard Webster Professor in Brain Imaging and Early Child Development at the University of British Columbia, and his work is supported by the BC Children’s Hospital Research Institute and the Canadian Institutes for Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regula Neuenschwander .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Neuenschwander, R., Oberlander, T.F. (2017). Developmental Origins of Self-regulation: Prenatal Maternal Stress and Psychobiological Development During Childhood. In: Deater-Deckard, K., Panneton, R. (eds) Parental Stress and Early Child Development. Springer, Cham. https://doi.org/10.1007/978-3-319-55376-4_6

Download citation

Publish with us

Policies and ethics