Skip to main content

Model-Based Path Planning

  • Chapter
  • First Online:
Sensing and Control for Autonomous Vehicles

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 474))

Abstract

Model-based path planning for autonomous vehicles may incorporate knowledge of the dynamics, the environment, the planning objective, and available resources. In this chapter, we first review the most commonly used dynamic models for autonomous ground , surface, underwater, and air vehicles. We then discuss five common approaches to path planning—optimal control , level set methods, coarse planning with path smoothing , motion primitives, and random sampling—along with a qualitative comparison. The chapter includes a brief interlude on optimal path planning for kinematic car models. The aim of this chapter is to provide a high-level introduction to the field and to suggest relevant topics for further reading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kabamba, P.T., Girard, A.R.: Fundamentals of Aerospace Navigation and Guidance. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  2. Yakimenko, O.A.: Direct method for rapid prototyping of near-optimal aircraft trajectories. J. Guid. Control Dyn. 23(5), 865–875 (2000)

    Article  Google Scholar 

  3. Aguiar, A.P., Hespanha, J.P., Kokotović, P.V.: Path-following for nonminimum phase systems removes performance limitations. IEEE Trans. Autom. Control 50(2), 234–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bullo, F., Lewis, A.D.: Geometric Control of Mechanical Systems. Springer, New York (2005)

    Book  MATH  Google Scholar 

  5. Bloch, A.M.: Nonholonomic Mechanics and Control. Springer, New York (2005)

    Google Scholar 

  6. Xu, B., Stilwell, D.J., Kurdila, A.J.: Fast path re-planning based on fast marching and level sets. J. Intell. Rob. Syst. 71(3), 303–317 (2013)

    Article  Google Scholar 

  7. Hsu, D., Kindel, R., Latombe, J.-C., Rock, S.: Randomized kinodynamic motion planning with moving obstacles. Int. J. Robot. Res. 21(3), 233–255 (2002)

    Article  MATH  Google Scholar 

  8. Purwin, O., D’Andrea, R., Lee, J.-W.: Theory and implementation of path planning by negotiation for decentralized agents. Robot. Auton. Syst. 56(5), 422–436 (2008)

    Article  Google Scholar 

  9. Helmick, D., Angelova, A., Matthies, L.: Terrain adaptive navigation for planetary rovers. J. Field Robot. 26(4), 391–410 (2009)

    Article  Google Scholar 

  10. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Path planning for autonomous vehicles in unknown semi-structured environments. Int. J. Robot. Res. 29(5), 485–501 (2010)

    Article  Google Scholar 

  11. Sonnenburg, C.R., Woolsey, C.A.: Modeling, identification, and control of an unmanned surface vehicle. J. Field Robot. 30(3), 371–398 (2013)

    Article  Google Scholar 

  12. Thomasson, P., Woolsey, C.A.: Vehicle motion in currents. IEEE J. Ocean. Eng. 38(2), 226–242 (2013)

    Article  Google Scholar 

  13. Perez, T.: Ship Motion Control: Course Keeping and Roll Stabilisation Using Rudder and Fins. Springer, Berlin (2005)

    Google Scholar 

  14. Kaminer, I., Pascoal, A., Xargay, E., Hovakimyan, N., Cao, C., Dobrokhodov, V.: Path following for unmanned aerial vehicles using \(\cal{L}_1\) adaptive augmentation of commercial autopilots. J. Guid. Control Dyn. 33(2), 550–564 (2010)

    Article  Google Scholar 

  15. Latombe, J.-C.: Robot Motion Planning. Springer Science & Business Media, New York (2012)

    Google Scholar 

  16. LaValle, S.M.: Planning Algorithms. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  17. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  18. Paden, B., Cap, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016)

    Article  Google Scholar 

  19. Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. Intell. Rob. Syst. 57(1–4), 65–100 (2010)

    Article  MATH  Google Scholar 

  20. Gong, Q., Lewis, L.R., Ross, I.M.: Pseudospectral motion planning for autonomous vehicles. J. Guid. Control Dyn. 32(3), 1039–1045 (2009)

    Article  Google Scholar 

  21. Lewis, L.R.: Rapid motion planning and autonomous obstacle avoidance for unmanned vehicles. Master’s thesis, Naval Postgraduate School (2006)

    Google Scholar 

  22. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  23. Reeds, J., Shepp, L.: Optimal paths for a car that goes both forwards and backwards. Pac. J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  24. Burns, J.: Introduction to the Calculus of Variations and Control with Modern Applications. CRC Press, Boca Raton (2013)

    Google Scholar 

  25. Leitmann, G.: The Calculus of Variations and Optimal Control. Plenum Press, New York (1981)

    Book  MATH  Google Scholar 

  26. Bryson, A.E., Ho, Y.-C.: Applied Optimal Control. CRC Press, Boca Raton (1975)

    Google Scholar 

  27. Wolek, A., Woolsey, C.: Feasible Dubins paths in presence of unknown, unsteady velocity disturbances. J. Guid. Control Dyn. 38(4), 782–787 (2015)

    Article  Google Scholar 

  28. Techy, L., Woolsey, C.A.: Minimum-time path planning for unmanned aerial vehicles in steady uniform winds. J. Guid. Control Dyn. 32(6), 1736–1746 (2009)

    Article  Google Scholar 

  29. Wolek, A., Cliff, E.M., Woolsey, C.A.: Time-optimal path planning for a kinematic car with variable speed controls. J. Guid. Control Dyn. 39(10), 2374–2390 (2016)

    Article  Google Scholar 

  30. Cockayne, E.J., Hall, G.W.C.: Plane motion of a particle subject to curvature constraints. SIAM J. Control 13(1), 197–220 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  31. Fedotov, A., Patsko, V., Turova, V.: Recent Advances in Mobile Robotics: Reachable Sets for Simple Models of Car Motion. InTech, Rijeka, Croatia (2011)

    Google Scholar 

  32. Bakolas, E., Tsiotras, P.: Optimal synthesis of the asymmetric sinistral/dextral Markov-Dubins problem. J. Optim. Theory Appl. 150(2), 233–250 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Mitchell, I.M., Sastry, S.: Continuous path planning with multiple constraints. In: IEEE International Conference on Decision and Control (2003)

    Google Scholar 

  34. Kimmel, R., Sethian, J.A.: Optimal algorithm for shape from shading and path planning. J. Math. Imaging Vis. 14(3), 237–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Takei, R., Tsai, R.: Optimal trajectories of curvature constrained motion in the Hamilton-Jacobi formulation. J. Sci. Comput. 54(2–3), 622–644 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gomez, J.V., Vale, A., Garrido, S., Moreno, L.: Performance analysis of fast marching-based motion planning for autonomous mobile robots in ITER scenarios. Robot. Auton. Syst. 63(1), 36–49 (2015)

    Article  Google Scholar 

  37. Lolla, T., Haley, P.J., Lermusiaux, P.F.J.: Time-optimal path planning in dynamic flows using level set equations: realistic applications. Ocean Dyn. 64(10), 1399–1417 (2014)

    Article  Google Scholar 

  38. Rhoads, B., Mezic, I., Poje, A.C.: Minimum time heading control of underpowered vehicles in time-varying ocean currents. Ocean Eng. 66, 12–31 (2013)

    Article  Google Scholar 

  39. Petres, C., Pailhas, Y., Patron, P., Petillot, Y., Evans, J., Lane, D.: Path planning for autonomous underwater vehicles. IEEE Trans. Robot. 23(2), 331–341 (2007)

    Article  Google Scholar 

  40. Choi, J.-W., Huhtala, K.: Constrained global path optimization for articulated steering vehicles. IEEE Trans. Veh. Technol. 65(4), 1868–1879 (2016)

    Article  Google Scholar 

  41. Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  42. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  43. Fleury, S., Soueres, P., Laumond, J.-P., Chatila, R.: Primitives for smoothing mobile robot trajectories. IEEE Trans. Robot. Autom. 11(3), 441–448 (1995)

    Article  Google Scholar 

  44. Lekkas, A.M., Dahl, A.R., Breivik, M., Fossen, T.I.: Continuous-curvature path generation using Fermat’s spiral. Model. Identif. Control 34(4), 183–198 (2013)

    Article  Google Scholar 

  45. Judd, K.B., McLain, T.W.: Spline Based Path Planning for Unmanned Aerial Vehicles. In: AIAA Guidance, Navigation and Control Conference (2001)

    Google Scholar 

  46. Bottasso, C.L., Leonello, D., Savini, B.: Path planning for autonomous vehicles by trajectory smoothing using motion primitives. IEEE Trans. Control Syst. Technol. 16(6), 1152–1168 (2008)

    Article  Google Scholar 

  47. Hull, D.G.: Conversion of optimal control problems into parameter optimization problems. J. Guid. Control Dyn. 20(1), 57–60 (1997)

    Article  MATH  Google Scholar 

  48. Pivtoraiko, M., Knepper, R.A., Kelly, A.: Differentially constrained mobile robot motion planning in state lattices. J. Field Robot. 26(3), 308–333 (2009)

    Article  Google Scholar 

  49. Ziegler, J., Stiller, C.: Spatiotemporal state lattices for fast trajectory planning in dynamic on-road driving scenarios. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)

    Google Scholar 

  50. Grymin, D.J., Neas, C.B., Farhood, M.: A hierarchical approach for primitive-based motion planning and control of autonomous vehicles. Robot. Auton. Syst. 62(2), 214–228 (2014)

    Article  Google Scholar 

  51. Frazzoli, E., Dahleh, M.A., Feron, E.: Maneuver-based motion planning for nonlinear systems with symmetries. IEEE Trans. Robot. 21(6), 1077–1091 (2005)

    Article  Google Scholar 

  52. Barraquand, J., Latombe, J.-C.: Nonholonomic multibody mobile robots: controllability and motion planning in the presence of obstacles. Algorithmica 10(2–4), 121–155 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  53. Koenig, S., Likhachev, M.: D* Lite. In: American Association for Artificial Intelligence Conference (2002)

    Google Scholar 

  54. Urmson, C., Simmons, R.: Approaches for heuristically biasing RRT growth. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2003)

    Google Scholar 

  55. Cheng, P., LaValle, S.M.: Reducing metric sensitivity in randomized trajectory design. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2001)

    Google Scholar 

  56. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 864–894 (2011)

    Article  MATH  Google Scholar 

  57. Bialkowski, J., Karaman, S., Otte, M., Frazzoli, E.: Efficient collision checking in sampling-based motion planning. Int. J. Robot. Res. 35(7), 767–796 (2016)

    Article  Google Scholar 

  58. Arslan, O., Tsiotras, P.: Use of relaxation methods in sampling-based algorithms for optimal motion planning. In: IEEE International Conference on Robotics and Automation (2013)

    Google Scholar 

  59. Plaku, E., Kavraki, L.E., Vardi, M.Y.: Discrete search leading continuous exploration for kinodynamic motion planning. In: Robotics: Science and Systems (2007)

    Google Scholar 

  60. McMahon, J., Plaku, E.: Mission and motion planning for autonomous underwater vehicles operating in spatially and temporally complex environments. IEEE J. Ocean. Eng. 3, 1–20 (2016)

    Google Scholar 

  61. Otte, M., Frazzoli, E.: RRT\(^{\rm {X}}\): asymptotically optimal single-query sampling-based motion planning with quick replanning. Int. J. Robot. Res. 35(7), 797–822 (2015)

    Article  Google Scholar 

  62. Tedrake, R., Manchester, I.R., Tobenkin, M., Roberts, J.W.: LQR-trees: feedback motion planning via sums-of-squares verification. Int. J. Robot. Res. 29(8), 1038–1052 (2010)

    Article  Google Scholar 

  63. Elbanhawi, M., Simic, M.: Sampling-based robot motion planning: a review. IEEE Access 2, 56–77 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Thomas Battista, Mazen Farhood, David Grymin, James McMahon, and Michael Otte for reviewing a draft of this chapter and providing helpful comments. The first author would also like to acknowledge support from the American Society for Engineering Education’s NRL Postdoctoral Fellowship program. The second author gratefully acknowledges the support of the ONR under Grant Nos. N00014-14-1-0651 and N00014-16-1-2749.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Wolek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wolek, A., Woolsey, C.A. (2017). Model-Based Path Planning. In: Fossen, T., Pettersen, K., Nijmeijer, H. (eds) Sensing and Control for Autonomous Vehicles. Lecture Notes in Control and Information Sciences, vol 474. Springer, Cham. https://doi.org/10.1007/978-3-319-55372-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55372-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55371-9

  • Online ISBN: 978-3-319-55372-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics