Skip to main content

Pose-Graph SLAM for Underwater Navigation

  • Chapter
  • First Online:
Sensing and Control for Autonomous Vehicles

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 474))

Abstract

This chapter reviews the concept of pose-graph simultaneous localization and mapping (SLAM) for underwater navigation . We show that pose-graph SLAM is a generalized framework that can be applied to many diverse underwater navigation problems in marine robotics . We highlight three specific examples as applied in the areas of autonomous ship hull inspection and multi-vehicle cooperative navigation .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More background on visual SLAM can be found in [16, 27].

  2. 2.

    A more detailed description can be found in [35, 36].

  3. 3.

    A more detailed description of GLC can be found in [6].

  4. 4.

    A more detailed description of cooperative localization with factor graph-based algorithms appears in [43, 44].

References

  1. Agarwal, S., Mierle, K., Others: Ceres solver. http://ceres-solver.org

  2. Bahr, A., Walter, M.R., Leonard, J.J.: Consistent cooperative localization. In: Proceedings of the IEEE International Conference on Robotics and Automation, Kobe, Japan, pp. 3415–3422 (2009)

    Google Scholar 

  3. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  4. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  5. Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I.D., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  6. Carlevaris-Bianco, N., Kaess, M., Eustice, R.M.: Generic node removal for factor-graph SLAM. IEEE Trans. Robot. 30(6), 1371–1385 (2014)

    Article  Google Scholar 

  7. Chaves, S.M., Kim, A., Galceran, E., Eustice, R.M.: Opportunistic sampling-based active visual SLAM for underwater inspection. Auton. Robot. 40(7), 1245–1265 (2016)

    Article  Google Scholar 

  8. Dellaert,F., Carlson, J., Ila, V., Ni, K., Thorpe, C.E.: Subgraph-preconditioned conjugate gradients for large scale SLAM. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 2566–2571 (2010)

    Google Scholar 

  9. Dellaert, F., Others: Gtsam. https://borg.cc.gatech.edu/download

  10. Dellaert, F., Kaess, M.: Square root SAM: simultaneous localization and mapping via square root information smoothing. Int. J. Robot. Res. 25(12), 1181–1203 (2006)

    Article  MATH  Google Scholar 

  11. Duckett, T., Marsland, S., Shapiro, J.: Fast, on-line learning of globally consistent maps. Auton. Robot. 12(3), 287–300 (2002)

    Article  MATH  Google Scholar 

  12. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  13. Eustice, R., Camilli, R., Singh, H.: Towards bathymetry-optimized Doppler re-navigation for AUVs. In: Proceedings of the IEEE/MTS OCEANS Conference and Exhibition, Washington, DC, USA, pp. 1430–1436 (2005)

    Google Scholar 

  14. Eustice, R., Pizarro, O., Singh, H., Howland, J.: UWIT: underwater image toolbox for optical image processing and mosaicking in Matlab. In: Proceedings of the International Symposium on Underwater Technology, Tokyo, Japan, pp. 141–145 (2002)

    Google Scholar 

  15. Eustice, R.M., Singh, H., Leonard, J.J.: Exactly sparse delayed-state filters for view-based SLAM. IEEE Trans. Robot. 22(6), 1100–1114 (2006)

    Article  Google Scholar 

  16. Eustice, R.M., Pizarro, O., Singh, H.: Visually augmented navigation for autonomous underwater vehicles. IEEE J. Ocean. Eng. 33(2), 103–122 (2008)

    Article  Google Scholar 

  17. Eustice, R.M., Singh, H., Whitcomb, L.L.: Synchronous-clock one-way-travel-time acoustic navigation for underwater vehicles. J. F. Robot. 28(1), 121–136 (2011)

    Article  Google Scholar 

  18. Fallon, M.F., Papadopoulis, G., Leonard, J.J.: A measurement distribution framework for cooperative navigation using multiple AUVs. In: Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, AK, pp. 4256–4263 (2010)

    Google Scholar 

  19. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with application to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  20. Haralick, R.M.: Propagating covariance in computer vision. In: Proceedings of the International Conference Pattern Recognition, vol. 1, Jerusalem, Israel, pp. 493–498 (1994)

    Google Scholar 

  21. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Hover, F.S., Vaganay, J., Elkins, M., Willcox, S., Polidoro, V., Morash, J., Damus, R., Desset, S.: A vehicle system for autonomous relative survey of in-water ships. Mar. Technol. Soc. J. 41(2), 44–55 (2007)

    Article  Google Scholar 

  23. Ila, V., Polok, L., Solony, M., Smrz, P., Zemcik, P.: Fast covariance recovery in incremental nonlinear least square solvers. In: Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA, USA, pp. 4636–4643 (2015)

    Google Scholar 

  24. Kaess, M., Ranganathan, A., Dellaert, F.: iSAM: incremental smoothing and mapping. IEEE Trans. Robot. 24(6), 1365–1378 (2008)

    Article  Google Scholar 

  25. Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J.J., Dellaert, F.: iSAM2: incremental smoothing and mapping using the Bayes tree. Int. J. Robot. Res. 31(2), 216–235 (2012)

    Article  Google Scholar 

  26. Kim, B., Kaess, M., Fletcher, L., Leonard, J., Bachrach, A., Roy, N., Teller, S.: Multiple relative pose graphs for robust cooperative mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation, Anchorage, Alaska, pp. 3185–3192 (2010)

    Google Scholar 

  27. Kim, A., Eustice, R.M.: Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Trans. Robot. 29(3), 719–733 (2013)

    Article  Google Scholar 

  28. Kim, A., Eustice, R.M.: Active visual SLAM for robotic area coverage: theory and experiment. Int. J. Robot. Res. 34(4–5), 457–475 (2015)

    Article  Google Scholar 

  29. Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: Underwater vehicle navigation: recent advances and new challenges. In: IFAC Conference on Manoeuvring and Control of Marine Craft, Lisbon, Portugal (2006)

    Google Scholar 

  30. Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, China, pp. 3607–3613 (2011)

    Google Scholar 

  31. Leonard, J.J., Durrant-Whyte, H.: Simultaneous map building and localization for an autonomous mobile robot. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Osaka, Japan, pp. 1442–1447 (1991)

    Google Scholar 

  32. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  33. Lu, F., Milios, E.: Globally consistent range scan alignment for environment mapping. Auton. Robot. 4(4), 333–349 (1997)

    Article  Google Scholar 

  34. Meduna, D., Rock, S., McEwen, R.: Low-cost terrain relative navigation for long-range AUVs. In: Proceedings of the IEEE/MTS OCEANS Conference and Exhibition, Woods Hole, MA, USA, pp. 1–7 (2008)

    Google Scholar 

  35. Ozog, P., Eustice, R.M.: Real-time SLAM with piecewise-planar surface models and sparse 3D point clouds. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, pp. 1042–1049 (2013)

    Google Scholar 

  36. Ozog, P., Carlevaris-Bianco, N., Kim, A., Eustice, R.M.: Long-term mapping techniques for ship hull inspection and surveillance using an autonomous underwater vehicle. J. F. Robot. 33(3), 265–289 (2016)

    Article  Google Scholar 

  37. Partan, J., Kurose, J., Levine, B.N.: A survey of practical issues in underwater networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 11(4), 23–33 (2007)

    Article  Google Scholar 

  38. Paull, L., Seto, M., Leonard, J.J.: Decentralized cooperative trajectory estimation for autonomous underwater vehicles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, pp. 184–191 (2014)

    Google Scholar 

  39. Roumeliotis, S.I., Bekey, G.A.: Distributed multirobot localization. IEEE Trans. Robot. Autom. 18(5), 781–795 (2002)

    Article  Google Scholar 

  40. Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: Cox, I., Wilfong, G. (eds.) Autonomous Robot Vehicles, pp. 167–193. Springer, Berlin (1990)

    Chapter  Google Scholar 

  41. Thrun, S., Liu, Y., Koller, D., Ng, A.Y., Ghahramani, Z., Durrant-Whyte, H.: Simultaneous localization and mapping with sparse extended information filters. Int. J. Robot. Res. 23(7–8), 693–716 (2004)

    Article  Google Scholar 

  42. Thrun, S., Montemerlo, M.: The graph SLAM algorithm with application to large-scale mapping of urban structures. Int. J. Robot. Res. 25(5–6), 403–429 (2006)

    Article  Google Scholar 

  43. Walls, J.M., Cunningham, A.G., Eustice, R.M.: Cooperative localization by factor composition over faulty low-bandwidth communication channels. In: Proceedings of the IEEE International Conference on Robotics and Automation, Seattle, WA (2015)

    Google Scholar 

  44. Walls, J.M., Eustice, R.M.: An origin state method for communication constrained cooperative localization with robustness to packet loss. Int. J. Robot. Res. 33(9), 1191–1208 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen M. Chaves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Chaves, S.M., Galceran, E., Ozog, P., Walls, J.M., Eustice, R.M. (2017). Pose-Graph SLAM for Underwater Navigation. In: Fossen, T., Pettersen, K., Nijmeijer, H. (eds) Sensing and Control for Autonomous Vehicles. Lecture Notes in Control and Information Sciences, vol 474. Springer, Cham. https://doi.org/10.1007/978-3-319-55372-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55372-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55371-9

  • Online ISBN: 978-3-319-55372-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics