Skip to main content

Underwater 3D Laser Scanners: The Deformation of the Plane

  • Chapter
  • First Online:
Sensing and Control for Autonomous Vehicles

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 474))

Abstract

Development of underwater 3D perception is necessary for autonomous manipulation and mapping. Using a mirror-galvanometer system to steer a laser plane and using triangulation, it is possible to produce full 3D perception without the need of moving the sensor. If the sensor does not meet certain hardware requirements, the laser plane is distorted when it passes through the different media (air–viewport–water). However, the deformation of this plane has not been studied. In this work a ray-tracing model is presented to study the deformation of the laser plane. To validate it, two types of datasets have been used, one synthetically generated using the model presented below, and another one using real data gathered underwater with an actual laser scanner. For both datasets an elliptic cone is fitted on the data and compared to a plane fit (the surface commonly used for triangulation). In the two experiments, the elliptic cone proved to be a better fit than the plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hinterstoisser, S., Cagniart, C., Ilic, S., Sturm, P., Navab, N., Fua, P., Lepetit, V.: Gradient response maps for real-time detection of textureless objects. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 876–888 (2012)

    Article  Google Scholar 

  2. Riley, M., Atkeson, C.G.: Robot catching: Towards engaging human-humanoid interaction. Auton. Robots 12(1), 119–128 (2002)

    Article  MATH  Google Scholar 

  3. Kim, S., Shukla, A., Billard, A.: Catching objects in flight. IEEE Trans. Robot. 30(5), 1049–1065 (2014)

    Article  Google Scholar 

  4. Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-Mancha, J.M.: Visual simultaneous localization and mapping: a survey. Artif. Intell. Rev. 43(1), 55–81 (2012)

    Article  Google Scholar 

  5. Hitomi, E.E., Silva, J.V.L., Ruppert, G.C.S.: 3D scanning using RGBD imaging devices: a survey. Developments in Medical Image Processing and Computational Vision, vol. 19, pp. 379–395. Springer International Publishing, Berlin (2015)

    Google Scholar 

  6. Carpenter, R.N.: Concurrent mapping and localization with FLS. In: Proceedings of the 1998 workshop on Autonomous Underwater Vehicles, 1998. AUV’98, vol. 02841, pp. 133–148 (1998)

    Google Scholar 

  7. Leonard, J.J., Carpenter, R.N., Feder, H.J.S.: Stochastic mapping using forward look sonar. Robotica 19(5), 467–480 (2001)

    Article  Google Scholar 

  8. Newman, P., Leonard, J.: Pure range-only sub-sea SLAM. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1921–1926 (2003)

    Google Scholar 

  9. Eliazar, A., Parr, R.: DP-SLAM: Fast, Robust simultaneous localization and mapping without predetermined landmarks. Proc. IEEE Int. Conf. Robot. Autom. (ICRA) 18, 1135–1142 (2003)

    Google Scholar 

  10. Fairfield, N., Jonak, D., Kantor, G.A., Wettergreen, D.: Field results of the control, navigation, and mapping systems of a hovering AUV. In: Proceedings of the 15th International Symposium on Unmanned Untethered Submersible Technology (2007)

    Google Scholar 

  11. Roman, C., Singh, H.: A self-consistent bathymetric mapping algorithm. J. Field Robot. 24(1–2), 23–50 (2007)

    Google Scholar 

  12. Ribas, D., Ridao, P., Domingo, J.D., Neira, J.: Underwater SLAM in man-made structured environments. J. Field Robot. 25(11–12), 898–921 (2008)

    Article  MATH  Google Scholar 

  13. Barkby, S., Williams, S.B., Pizarro, O., Jakuba, M.: A featureless approach to efficient bathymetric SLAM using distributed particle mapping. J. Field Robot. 28(1), 19–39 (2011)

    Article  MATH  Google Scholar 

  14. Aykin, M.D., Negahdaripour, S.: On feature matching and image registration for two-dimensional forward-scan sonar imaging. J. Field Robot. 30(4), 602–623 (2013)

    Article  Google Scholar 

  15. Hurtós, N., Ribas, D., Cufí, X., Petillot, Y., Salvi, J.: Fourier-based registration for robust forward-looking sonar mosaicing in low-visibility underwater environments. J. Field Robot. 32(1), 123–151 (2015)

    Article  Google Scholar 

  16. Mallios, A., Ridao, P., Ribas, D., Carreras, M., Camilli, R.: Toward autonomous exploration in confined underwater environments. J. Field Robot. (2015)

    Google Scholar 

  17. Palomer, A., Ridao, P., Ribas, D.: Multibeam 3D underwater SLAM with probabilistic registration. Sensors 16(560), 1–23 (2016)

    Google Scholar 

  18. Eustice, R., Pizarro, O., Singh, H.: Visually augmented navigation in an unstructured environment using a delayed state history. Proc. IEEE Int. Conf. Robot. Autom. (ICRA) 1(April), 25–32 (2004)

    Google Scholar 

  19. Williams, S., Mahon, I.: Simultaneous localisation and mapping on the great barrier reef. Proc. IEEE Int. Conf. Robot. Autom. (ICRA) 2, 1771–1776 (2004)

    Google Scholar 

  20. Eustice, R., Singh, H., Leonard, J., Walter, M., Ballard, R.: Visually navigating the RMS Titanic with SLAM information filters. Proc. Robot. Sci. Syst. (2005)

    Google Scholar 

  21. Johnson-Roberson, M., Pizarro, O., Williams, S.B., Mahon, I.: Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. J. Field Robot. 27(1), 21–51 (2010)

    Article  Google Scholar 

  22. Gracias, N., Ridao, P., Garcia, R., Escartin, J., Cibecchini, F., Campos, R., Carreras, M., Ribas, D., Magi, L., Palomer, A., Nicosevici, T., Prados, R., Neumann, L., Filippo, F.D., Mallios, A.: Mapping the moon: using a lightweight AUV to survey the site of the 17th Century ship La Lune. In: Proceedings of the MTS/IEEE OCEANS conference (2013)

    Google Scholar 

  23. Campos, R., Gracias, N., Palomer, A., Ridao, P.: Global alignment of a multiple-robot photomosaic using opto-acoustic constraints. In: NGCUV2015 Girona, vol. 48, pp. 20–25. Elsevier Ltd. (2015)

    Google Scholar 

  24. Roman, C., Inglis, G., Rutter, J.: Application of structured light imaging for high resolution mapping of underwater archaeological sites. In: Oceans’10 Ieee Sydney, pp. 1–9. IEEE (2010)

    Google Scholar 

  25. Inglis, G., Smart, C. Vaughn, I., Roman, C.: A pipeline for structured light bathymetric mapping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, no. Figure 1, pp. 4425–4432 (2012)

    Google Scholar 

  26. Ridao, P., Carreras, M., Ribas, D., Sanz, P.J., Oliver, G., Vision, C.: Intervention AUVs: The Next Challenge. In: World IFAC Congress (2014)

    Google Scholar 

  27. Marani, G., Choi, S.K., Yuh, J.: Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 36(1), 15–23 (2009)

    Article  Google Scholar 

  28. Sanz, P.J., Ridao, P., Oliver, G., Casalino, G., Petillot, Y., Silvestre, C., Melchiorri, C., Turetta, A.: TRIDENT: An European Project Targeted to Increase the Autonomy Levels for Underwater Intervention. Oceans 2013 San Diego (2013)

    Google Scholar 

  29. Carrera, A., Palomeras, N., Hurtós, N., Carreras, M.: Free-floating panel intervention by means of learning by demonstration. In: IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 48, no. 2, pp. 38–43 (2015)

    Google Scholar 

  30. Ridao, P., Palomer, A., Youakim, D., Petillot, Y.: Control of an Underwater Redundant Robot Arm in Presence of Unknown Static Obstacles. World IFAC Congress (2017). Submitted

    Google Scholar 

  31. Massot-Campos, M., Oliver-Codina, G.: Underwater laser-based structured light system for one-shot 3D reconstruction. In: IEEE SENSORS 2014 Proceedings, pp. 1138–1141 (2014)

    Google Scholar 

  32. Prats, M., Fernandez, J.J., Sanz, P.J.: Combining template tracking and laser peak detection for 3D reconstruction and grasping in underwater environments. In: IEEE International Conference on Intelligent Robots and Systems, pp. 106–112 (2012)

    Google Scholar 

  33. Sanz, P.J., Peñalver, A., Sales, J., Fornas, D., Fernández, J.J., Pérez, J., Bernabé, J.: GRASPER: A multisensory based manipulation system for underwater operations. In: Proceedings - 2013 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2013, pp. 4036–4041 (2013)

    Google Scholar 

  34. Chantler, M.J., Clark, J., Umasuthan, M.: Calibration and operation of an underwater laser triangulation sensor: the varying baseline problem. Opt. Eng. 36(9), 2604 (1997)

    Article  Google Scholar 

  35. Kocak, D., Caimi, F., Das, P., Karson, J.: A 3-D laser line scanner for outcrop scale studies of seafloor features. Proc. Oceans Conf. 3, 1105–1114 (1999)

    Google Scholar 

  36. Hildebrandt, M., Kerdels, J., Albiez, J., Kirchner, F.: A practical underwater 3D-Laserscanner. Oceans (2008)

    Google Scholar 

  37. Treibitz, T., Schechner, Y.Y., Kunz, C., Singh, H.: Flat refractive geometry. IEEE Trans. Pattern Anal. Mach. Intell. 34(1), 51–65 (2012)

    Article  Google Scholar 

  38. Powell, I.: Design of a laser beam line expander 1. Appl. Opt. 26(17), 3705–3709 (1987)

    Article  Google Scholar 

  39. Fischler, M.a., Bolles, R.C., Boller, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Google Scholar 

  40. Weingarten, J., Gruener, G., Siegwart, R.: Probabilistic plane fitting in 3D and an application to robotic mapping. In: IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 1, pp. 927–932 (2004)

    Google Scholar 

  41. Triebel, R., Burgard, W., Dellaert, F.: Using hierarchical EM to extract planes from 3D range scans. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4437–4442 (2005)

    Google Scholar 

  42. Pathak, K., Birk, A., Vaskevicius, N., Pfingsthorn, M., Schwertfeger, S., Poppinga, J.: Online three-dimensional SLAM by registration of large planar surface segments and closed-form pose-graph relaxation. J. Field Robot. 27(1), 52–84 (2010)

    Article  Google Scholar 

  43. Xiao, J., Zhang, J., Zhang, J., Zhang, H., Hildre, H.P.: Fast plane detection for SLAM from noisy range images in both structured and unstructured environments. In: 2011 IEEE International Conference on Mechatronics and Automation, pp. 1768–1773 (2011)

    Google Scholar 

  44. Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. Auton. Robot Veh. 1, 167–193 (1990)

    Article  MATH  Google Scholar 

  45. Zhang, Z.: A flexible new technique for camera calibration (Technical Report). IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2002)

    Article  Google Scholar 

  46. Bosch, J., Gracias, N., Ridao, P., Ribas, D.: Omnidirectional underwater camera design and calibration. Sensors 15(3), 6033–6065 (2015)

    Article  Google Scholar 

  47. Ciddor, P.E.: Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 35(9), 1566–1573 (1996)

    Article  Google Scholar 

  48. Sultanova, N., Kasarova, S., Nikolov, I.: Dispersion properties of optical polymers. Acta Phys. Pol., A 116(4), 585–587 (2009)

    Article  Google Scholar 

  49. Daimon, M., Masumura, A.: Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 46(18), 3811–3820 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Palomer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Palomer, A., Ridao, P., Ribas, D., Forest, J. (2017). Underwater 3D Laser Scanners: The Deformation of the Plane. In: Fossen, T., Pettersen, K., Nijmeijer, H. (eds) Sensing and Control for Autonomous Vehicles. Lecture Notes in Control and Information Sciences, vol 474. Springer, Cham. https://doi.org/10.1007/978-3-319-55372-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55372-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55371-9

  • Online ISBN: 978-3-319-55372-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics