Skip to main content

Robotized Underwater Interventions

  • Chapter
  • First Online:
Sensing and Control for Autonomous Vehicles

Abstract

Working in underwater environments poses many challenges for robotic systems. One of them is the low bandwidth and high latency of underwater acoustic communications, which limits the possibility of interaction with submerged robots. One solution is to have a tether cable to enable high speed and low latency communications, but that requires a support vessel and increases costs. For that reason, autonomous underwater robots are a very interesting solution. Several research projects have demonstrated autonomy capabilities of Underwater Vehicle Manipulator Systems (UVMS) in performing basic manipulation tasks, and, moving a step further, this chapter will present a unifying architecture for the control of an UVMS, comprehensive of all the control objectives that an UVMS should take into account, their different priorities and the typical mission phases that an UVMS has to tackle. The proposed strategy is supported both by a complete simulated execution of a test-case mission and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gancet, J., Weiss, P., Antonelli, G., Pfingsthorn, M.F., Calinon, S., Turetta, A., Walen, C., Urbina, D., Govindaraj, S., Letier, P., Martinez, X., Salini, J., Chemisky, B., Indiveri, G., Casalino, G., Di Lillo, P., Simetti, E., De Palma, D., Birk, A., Fromm, T., Mueller, C., Tanwani, A., Havoutis, I., Caffaz, A., L, Guilpain: Dexterous undersea interventions with far distance onshore supervision: the dexrov project. In: 10th IFAC Conference on Control Applications in Marine Systems. IFAC, vol. 49, no. 23, pp. 414–419. Elsevier, Trondheim, Norway (2016)

    Google Scholar 

  2. ROBUST website. http://eu-robust.eu (2016). Accessed 25 Oct 2016

  3. Yoerger, D.R., Schempf, H., DiPietro, D.M.: Design and performance evaluation of an actively compliant underwater manipulator for full-ocean depth. J. Robot. Syst. 8(3), 371–392 (1991)

    Article  Google Scholar 

  4. Schempf, H., Yoerger, D.: Coordinated vehicle/manipulator design and control issues for underwater telemanipulation. In: Applications in Marine Systems (CAMS 92), Genova, Italy (1992)

    Google Scholar 

  5. Lane, D.M., Davies, J.B.C., Casalino, G., Bartolini, G., Cannata, G., Veruggio, G., Canals, M., Smith, C., O’Brien, D.J., Pickett, M., Robinson, G., Jones, D., Scott, E., Ferrara, A., Angelleti, D., Coccoli, M., Bono, R., Virgili, P., Pallas, R., Gracia, E.: Amadeus: advanced manipulation for deep underwater sampling. IEEE Robot. Autom. Mag. 4(4), 34–45 (1997)

    Article  Google Scholar 

  6. Casalino, G., Angeletti, D., Bozzo, T., Marani, G.: Dexterous underwater object manipulation via multi-robot cooperating systems. In: IEEE International Conference on Robotics and Automation, 2001. Proceedings 2001 ICRA, vol. 4, pp. 3220–3225. IEEE (2001)

    Google Scholar 

  7. Rigaud, V., Coste-Manière, È., Aldon, M.-J., Probert, P., Perrier, M., Rives, P., Simon, D., Lang, D., Kiener, J., Casal, A., et al.: Union: underwater intelligent operation and navigation. Robot. Autom. Mag. IEEE 5(1), 25–35 (1998)

    Article  Google Scholar 

  8. Yuh, J., Choi, S., Ikehara, C., Kim, G., McMurty, G., Ghasemi-Nejhad, M., Sarkar, N., Sugihara, K., Design of a semi-autonomous underwater vehicle for intervention missions (SAUVIM). In: Proceedings of the 1998 International Symposium on Underwater Technology, pp. 63–68. IEEE, Tokyo, Japan (1998)

    Google Scholar 

  9. Marani, G., Choi, S.K., Yuh, J.: Underwater autonomous manipulation for intervention missions AUVs. Ocean Eng. 36, 15–23 (2008)

    Article  Google Scholar 

  10. Evans, J., Redmond, P., Plakas, C., Hamilton, K., Lane, D.: Autonomous docking for Intervention-AUVs using sonar and video-based real-time 3D pose estimation. In: Oceans 2003, vol. 4, pp. 2201–2210. IEEE (2003)

    Google Scholar 

  11. Marty, P., et al.: Alive: An autonomous light intervention vehicle. In: Advances in Technology for Underwater Vehicles Conference. Oceanology International, vol. 2004 (2004)

    Google Scholar 

  12. Casalino, G., Zereik, E., Simetti, E., Torelli, S., Sperindé, A., Turetta, A.: A task and subsystem priority based control strategy for underwater floating manipulators. In: IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles (NGCUV 2012), pp. 170–177, Porto, Portugal (2012)

    Google Scholar 

  13. Casalino, G., Zereik, E., Simetti, E., Torelli, S., Sperindé, A., Turetta, A.: Agility for underwater floating manipulation task and subsystem priority based control strategy. In: International Conference on Intelligent Robots and Systems (IROS 2012), pp. 1772–1779, Vilamoura, Portugal (2012)

    Google Scholar 

  14. Simetti, E., Casalino, G., Torelli, S., Sperindé, A., Turetta, A.: Experimental results on task priority and dynamic programming based approach to underwater floating manipulation. In: OCEANS 2013. Bergen, Norway (2013)

    Google Scholar 

  15. Simetti, E., Casalino, G., Torelli, S., Sperindé, A., Turetta, A.: Floating underwater manipulation: developed control methodology and experimental validation within the trident project. J. Field Robot. 31(3), 364–385 (2014). May

    Article  Google Scholar 

  16. Casalino, G., Caccia, M., Caiti, A., Antonelli, G., Indiveri, G., Melchiorri, C., Caselli, S.: Maris: A national project on marine robotics for interventions. In: 22nd Mediterranean Conference of Control and Automation (MED). IEEE, 864–869 (2014)

    Google Scholar 

  17. Casalino, G., Caccia, M., Caselli, S., Melchiorri, C., Antonelli, G., Caiti, A., Indiveri, G., Cannata, G., Simetti, E., Torelli, S., Sperind, A., Wanderlingh, F., Muscolo, G., Bibuli, M., Bruzzone, G., Zereik, E., Odetti, A., Spirandelli, E., Ranieri, A., Aleotti, J., Lodi Rizzini, D., Oleari, F., Kallasi, F., Palli, G., Moriello, L., Cataldi, E.: Underwater intervention robotics: an outline of the italian national project MARIS. Mar. Technol. Soc. J. 50(4), 98–107 (2016)

    Article  Google Scholar 

  18. Simetti, E., Casalino, G.: Whole body control of a dual arm underwater vehicle manipulator system. Annu. Rev. Control 40, 191–200 (2015)

    Article  Google Scholar 

  19. Manerikar, N., Casalino, G., Simetti, E., Torelli, S., Sperindé, A.: On autonomous cooperative underwater floating manipulation systems. In: International Conference on Robotics and Automation (ICRA 15), pp. 523–528. IEEE, Seattle, WA (2015)

    Google Scholar 

  20. Simetti, E., Casalino, G.: Manipulation and transportation with cooperative underwater vehicle manipulator systems. IEEE J. Ocean. Eng. (2016)

    Google Scholar 

  21. Di Lillo, P.A., Simetti, E., De Palma, D., Cataldi, E., Indiveri, G., Antonelli, G., Casalino, G.: Advanced rov autonomy for efficient remote control in the DexROV project. Mar. Technol. Soc. J. 50(4), 67–80 (2016)

    Article  Google Scholar 

  22. Ben-Israel, A., Greville, T., Generalized Inverses: Theory and Applications, vol. 15. Springer, Berlin (2003)

    Google Scholar 

  23. Perez, T., Fossen, T.I.: Kinematic models for manoeuvring and seakeeping of marine vessels. Model. Identif. Control 28(1), 19–30 (2007)

    Article  Google Scholar 

  24. Yoshikawa, T.: Manipulability of robotic mechanisms. Int. J. Robot. Res. 4(1), 3–9 (1985)

    Article  Google Scholar 

  25. Siciliano, B., Slotine, J.-J.E.: A general framework for managing multiple tasks in highly redundant robotic systems. In: Proceedings of the Fifth International Advanced Robotics ’Robots in Unstructured Environments’, 91 ICAR. Conference, pp. 1211–1216. IEEE, Pisa, Italy (1991)

    Google Scholar 

  26. Simetti, E., Casalino, G.: A novel practical technique to integrate inequality control objectives and task transitions in priority based control. J. Intell. Robot. Syst. 84(1), 877–902 (2016)

    Article  Google Scholar 

  27. Doty, K.L., Melchiorri, C., Bonivento, C.: A theory of generalized inverses applied to robotics. Int. J. Robot. Res. 12(1), 1–19 (1993)

    Article  Google Scholar 

  28. Mansard, N., Remazeilles, A., Chaumette, F.: Continuity of varying-feature-set control laws. IEEE Trans. Autom. Control 54(11), 2493–2505 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Antonelli, G., Indiveri, G., Chiaverini, S.: Prioritized closed-loop inverse kinematic algorithms for redundant robotic systems with velocity saturations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems: IROS 2009, pp. 5892–5897. IEEE (2009)

    Google Scholar 

  30. Whitcomb, L.L., Yoerger, D.R.: Comparative experiments in the dynamics and model-based control of marine thrusters. In: OCEANS, vol. 2, pp. 1019–1028. IEEE (1995)

    Google Scholar 

  31. Whitcomb, L.L., Yoerger, D.R.: Preliminary experiments in model-based thruster control for underwater vehicle positioning. IEEE J. Ocean. Eng. 24(4), 495–506 (1999)

    Article  Google Scholar 

  32. Bachmayer, R., Whitcomb, L.L., Grosenbaugh, M.A.: An accurate four-quadrant nonlinear dynamical model for marine thrusters: theory and experimental validation. IEEE J. Ocean. Eng. 25(1), 146–159 (2000)

    Article  Google Scholar 

  33. Rizzini, D.L., Kallasi, F., Oleari, F., Caselli, S.: Investigation of vision-based underwater object detection with multiple datasets. Int. J. Adv. Robot. Syst. 12(77), 1–13 (2015)

    Google Scholar 

  34. Simetti, E., Galeano, S., Casalino, G.: Underwater vehicle manipulator systems: control methodologies for inspection and maintenance tasks. In: OCEANS 16. IEEE, Shanghai, China (2016)

    Google Scholar 

  35. Yuh, J.: Design and control of autonomous underwater robots: a survey. Auton. Robots 8(1), 7–24 (2000)

    Article  Google Scholar 

  36. Yuh, J., West, M.: Underwater robotics. Adv. Robot. 15(5), 609–639 (2001)

    Article  Google Scholar 

  37. Antonelli, G.: Underwater Robots. Springer Tracts in Advanced Robotics, vol. 96. Springer, Berlin (2014)

    Google Scholar 

  38. Kinsey, J.C., Eustice, R.M., Whitcomb, L.L.: A survey of underwater vehicle navigation: recent advances and new challenges. In: IFAC Conference of Manoeuvering and Control of Marine Craft, vol. 88 (2006)

    Google Scholar 

  39. Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Robot. Syst. 53(3), 263–296 (2008)

    Article  Google Scholar 

  40. Partan, J., Kurose, J., Levine, B.N.: A survey of practical issues in underwater networks. ACM SIGMOBILE Mob. Comput. Commun. Rev. 11(4), 23–33 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the MIUR (Italian Ministry of Education, University and Research) through the MARIS prot. 2010FBLHRJ project and by the European Commission through the H2020-BG-06-2014-635491 DexROV project and the H2020-SC5-2015-690416 ROBUST project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Simetti .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Under-Actuated Vehicles

This chapter has presented UVMS control algorithms under the assumption of fully actuated vehicle. However, in many cases the vehicles are passively stable in some d.o.f. (typically roll and/or pitch). The algorithm (16) can easily cope with this situation, by using a slightly different initialization. As an example, in lieu of (15) consider the following initial values for a vehicle with roll and pitch not actuated:

$$\begin{aligned} \begin{aligned} \varvec{\rho }_{0}&= \begin{bmatrix} \mathbf 0 _{l \times 1} \\ \mathbf 0 _{3 \times 1} \\ \omega _x \\ \omega _y \\ 0\end{bmatrix}&\mathbf Q _{0}&= \begin{bmatrix} \mathbf I _{l \times l}&\mathbf 0 _{l \times 3}&\mathbf 0 _{l \times 1}&\mathbf 0 _{l \times 1}&\mathbf 0 _{l \times 1} \\ \mathbf 0 _{3 \times l}&\mathbf I _{3 \times 3}&\mathbf 0 _{3 \times 1}&\mathbf 0 _{3 \times 1}&\mathbf 0 _{3 \times 1} \\ \mathbf 0 _{1 \times l}&\mathbf 0 _{1 \times 3}&0&0&0 \\ \mathbf 0 _{1 \times l}&\mathbf 0 _{1 \times 3}&0&0&0 \\ \mathbf 0 _{1 \times l}&\mathbf 0 _{1 \times 3}&0&0&1\end{bmatrix}. \end{aligned} \end{aligned}$$
(20)

The idea is that the solution \(\varvec{\rho }\) is initialized with the actual angular velocities of the vehicle, as measured by onboard sensors. At the same time, to force the task hierarchy resolution to avoid changing these values, the corresponding diagonal values of the matrix \(\mathbf Q \) are set to zero. This effectively inhibits the algorithm from changing the initial values. Note that all the tasks will properly take into account the nonactuated d.o.f. velocities due to the term \(\left( \dot{\bar{\varvec{x}}}_k - \mathbf J _k \varvec{\rho }_{k-1} \right) \).

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Casalino, G., Simetti, E., Wanderlingh, F. (2017). Robotized Underwater Interventions. In: Fossen, T., Pettersen, K., Nijmeijer, H. (eds) Sensing and Control for Autonomous Vehicles. Lecture Notes in Control and Information Sciences, vol 474. Springer, Cham. https://doi.org/10.1007/978-3-319-55372-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55372-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55371-9

  • Online ISBN: 978-3-319-55372-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics