Advertisement

Physico-Mathematical Models of Relaxing Molecular Gas Flows

  • Yurii N. GrigoryevEmail author
  • Igor V. Ershov
Chapter
  • 329 Downloads
Part of the Fluid Mechanics and Its Applications book series (FMIA, volume 117)

Abstract

The chapter has an introductory character and provides some auxiliary material to give an idea of notions and results of physical kinetics, kinetic theory, and acoustics of molecular gases, which are used in the book. The main goal of this chapter is to demonstrate the feasibility and adequacy of physical and mathematical models used in the authors’ researches. In particular the evolution of the concept of bulk viscosity in mechanics and kinetic theory of gases is briefly described. Qualitative properties of the Landau-Teller relaxation equation for the vibrational mode energy, which plays a key role in subsequent considerations, are discussed. The physical mechanism of dissipation of acoustic waves on the background of the relaxation process in a thermally nonequilibrium molecular gas is explained.

Keywords

Kinetic Theory Vibrational Energy Bulk Viscosity Vibrational Level Vibrational Relaxation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gordiets, B.F., Osipov, A.I., Shelepin, L.A.: Kinetic Processes in Gases and Molecular Lasers. Gordon and Breach, New York (1987)Google Scholar
  2. 2.
    Losev, S.A.: Gasdynamic Laser. Springer, Berlin (1981)CrossRefGoogle Scholar
  3. 3.
    Stupochenko, E.V., Losev, S.A., Osipov, A.I.: Relaxation Processes in Shock Waves. Nauka, Moscow (1965) (in Russian)Google Scholar
  4. 4.
    Nagnibeda, E.A., Kustova, E.V.: Non-equilibrium Reacting Gas Flows. Kinetic Theory of Transport and Relaxation Processes. Springer, Berlin (2009)Google Scholar
  5. 5.
    Ferziger, J.H., Kaper, H.G.: Mathematical Theory of Transport Processes in Gases. North Holland Publishing Company, Amsterdam (1972)Google Scholar
  6. 6.
    Zhdanov, V.M., Aliyevskii, M.Ya.: Transfer and Relaxation Processes in Molecular Gases. Nauka, Moscow (1989) (in Russian)Google Scholar
  7. 7.
    Kogan, M.N.: Rarefied Gas Dynamics. Plenum Press, New York (1969)CrossRefGoogle Scholar
  8. 8.
    Zeldovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Academic Press, New York (1967)Google Scholar
  9. 9.
    Leontovoich, M.A.: Remarks on the theory of sound attenuation in gases. Zh. Éksp. Teor. Fiz. 6, 561–576 (1936) (in Russian)Google Scholar
  10. 10.
    Leontovoich, M.A.: Some questions in the theory of sound absorption polyatomic gases. Izv. Akad. Nauk SSSR. Ser. Fizika 5, 633–636 (1936) (in Russian)Google Scholar
  11. 11.
    Schwartz, R.N., Slawsky, Z.I., Herzfeld, K.F.: Calculation of vibrational relaxation times in gases. J. Chem. Phys. 20, 1591–1599 (1952)ADSCrossRefGoogle Scholar
  12. 12.
    Gordiets, B.F., Zhdanok, S.: Analytical theory of vibrational kinetics of anharmonic oscillators. In: Capitelli, M. (ed.) Nonequilibrium Vibrational Kinetics. Series Topics in Current Physics, vol. 39, pp. 47–84. Springer, Berlin (1986)CrossRefGoogle Scholar
  13. 13.
    Brun, R., Zappoli, B.: Model equations for a vibrationally relaxing gas. Phys. Fluids 20, 1441–1448 (1977)ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    Vincenti, W.G., Kruger, Ch.H.: Introduction to Physical Gas Dynamics. Krieger, Huntington (1975)Google Scholar
  15. 15.
    Landau, L., Teller, E.: On the theory of sound dispersion. In: Ter Haar, D. (ed.) Collected Papers of L.D. Landau, pp. 147–153. Pergamon Press, Oxford (1965)Google Scholar
  16. 16.
    Kustova, E.V., Oblapenko, G.V.: Reaction and internal energy relaxation rates in viscous thermochemically non-equilibrium gas flows. Phys. Fluids 27, 016102 (2015)ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    Kochin, N.E., Kibel, I.A., Rose, N.V.: Theoretical Hydromechanics. Part 2. Fizmatgiz, Moscow (1963) (in Russian)Google Scholar
  18. 18.
    Meador, W.E., Miner, G., Townsend, I.W.: Bulk viscosity as relaxation parameter: fact or fiction? Phys. Fluids 8, 258–261 (1996)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Rosenhead, L., et al.: A discussion on the first and second viscosities. Proc. R. Soc. A. 226, 1–69 (1954)Google Scholar
  20. 20.
    Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1932)zbMATHGoogle Scholar
  21. 21.
    Truesdell, C.: On the viscosity of fluids according to the kinetic theory. Zeitsch. Phys. 131, 273–289 (1952)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1952)zbMATHGoogle Scholar
  23. 23.
    Kohler, M.: Reibung in mabig verdunnten gasen als folge verzogerte einstellung der energie. Zeitsch. Phys. 125, 715–732 (1949)ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    Prangsma, G.J., Alberga, A.H., Beenakker, J.J.M.: Ultrasonic determination of the volume viscosity of \(\rm {N}_2\), \(\rm {CO}\), \(\rm {CH}_4\), \(\rm {CO}_2\) between \(77\) and \(3000\) K. Physica 64, 278–288 (1973)Google Scholar
  25. 25.
    Greenspan, M.: Rotational relaxation in nitrogen, oxygen and air. J. Acoust. Soc. Am. 31, 155–160 (1959)ADSCrossRefGoogle Scholar
  26. 26.
    Monchick, L., Yun, K.S., Mason, E.A.: Relaxation effects in the transport properties of rough spheres. J. Chem. Phys. 38, 1282–1287 (1963)ADSCrossRefGoogle Scholar
  27. 27.
    Condiff, D.W., Lu, W.K., Dahler, J.S.: Transport properties of polyatomic fluids. A dilute gas of perfectly rough spheres. J. Chem. Phys. 42, 3445–3475 (1965)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    Hirschfelder, J.O., Curtiss, Ch.F., Bird, R.B.: Molecular Theory of Gases and Liquids. Wiley, New York (1954)Google Scholar
  29. 29.
    Jeans, J.H.: The distribution of molecular energy. Philos. Trans. R. Soc. 68, 175–253 (1901)zbMATHGoogle Scholar
  30. 30.
    Dahler, J.S., Satcher, N.F.: Kinetic theory of loaded molecules, I. J. Chem. Phys. 38, 2363–2382 (1963)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Sandler, S.I., Dahler, J.S.: Kinetic theory of loaded molecules, II. J. Chem. Phys. 43, 1750–1759 (1965)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Curtiss, C.F., Dahler, J.S.: Kinetic theory of nonspherical molecules. J. Chem. Phys. 24, 2425–2441 (1956)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Curtiss, C.F., Muckenfuss, C.: Kinetic theory of nonspherical molecules, II. J. Chem. Phys. 26, 1619–1636 (1957)ADSCrossRefGoogle Scholar
  34. 34.
    Curtiss, C.F., Dahler, J.S.: Kinetic theory of nonspherical molecules, V. J. Chem. Phys. 38, 2352–2362 (1963)Google Scholar
  35. 35.
    Parbrook, H.D., Tempest, W.: Sound absorption in nitrogen and oxygen. Acustica 8, 345–348 (1958)Google Scholar
  36. 36.
    Carnevale, E.H., Carey, C., Larson, G.: Ultrasonic determination of rotational collision numbers and vibrational relaxation times of polyatomic gasses at high temperatures. J. Chem. Phys. 47, 2829–2844 (1967)ADSCrossRefGoogle Scholar
  37. 37.
    Parker, J.G.: Rotational and vibrational relaxation in diatomic gases. Phys. Fluids 2, 449–461 (1959)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    Brau, C.A., Johnkman, K.H.: Classical theory of rotational relaxation in diatomic gases. J. Chem. Phys. 52, 477–484 (1970)ADSCrossRefGoogle Scholar
  39. 39.
    Gerasimov, G.Ya., Makarov, V.N.: Theory of rotational relaxation in a diatomic gas. J. Appl. Mech. Tech. Phys. 16, 8–12 (1975)Google Scholar
  40. 40.
    Lordi, J.A., Mater, R.E.: Rotational relaxation in nonpolar diatomic gases. Phys. Fluids 13, 291–308 (1970)ADSCrossRefzbMATHGoogle Scholar
  41. 41.
    Grigor’ev, I.S., Meilikhov, E.Z. (eds.): Physical Quantities, Handbook. Énergoatomizdat, Moscow (1991) (in Russian)Google Scholar
  42. 42.
    Kikoin, I.K. (ed.): Tables of Physical Quantities, Handbook. Atomizdat, Moscow (1976) (in Russian)Google Scholar
  43. 43.
    Kaye, G.W., Laby, T.H.: Tables of Physical and Chemical Constants. Longmans, Green & Co., London (1958)zbMATHGoogle Scholar
  44. 44.
    Kustova, E.V., Nagnibeda, E.A.: The influence of non-Boltzman vibrational distribution on thermal conductivity and viscosity. In: Capitelli, M. (ed.) Molecular Physics and Hypersonic Flows, pp. 383–392. Kluwer Academic Publishers, Dordrecht (1996)CrossRefGoogle Scholar
  45. 45.
    Kustova, E.V.: Kinetic model of molecular gas dynamics in strongly non-equilibrium conditions. Vestn. S.-Peterb. Univ. Ser. 1(9), 60–65 (1995) (in Russian)Google Scholar
  46. 46.
    Kustova, E.V., Nagnibeda, E.A.: Strong non-equilibrium effects on specific heats and thermal conductivity of diatomic gas. Chem. Phys. 208, 313–329 (1996)ADSCrossRefGoogle Scholar
  47. 47.
    Millikan, R.C., White, D.R.: Systematics of vibrational relaxation. J. Chem. Phys. 39, 3209–3213 (1963)ADSCrossRefGoogle Scholar
  48. 48.
    Mack, L.M.: On the inviscid acoustic-mode instability of supersonic shear flows. Part I: two-dimensional waves. Theor. Comput. Fluid Dyn. 2, 97–123 (1990)zbMATHGoogle Scholar
  49. 49.
    Korn, G.A., Korn, T.M.: Mathematical Handbook for Scientists and Engineers. McGraw-Hill, New York (1961)zbMATHGoogle Scholar
  50. 50.
    Shpakovsky, B.G.: The dispersion and selective absorption of ultrasonic waves in a monatomic gas. Usp. Fiz. Nauk 14, 283–297 (1934) (in Russian)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of Computational TechnologiesRussian Academy of SciencesNovosibirskRussia

Personalised recommendations