Advertisement

Spatial Prediction of Landslides Along Jalan Kota in Bandar Seri Begawan (Brunei) Using Airborne LiDAR Data and Support Vector Machine

  • Biswajeet PradhanEmail author
  • Mustafa Neamah Jebur
  • Saleh Abdullahi
Chapter

Abstract

A landslide is one of the most dangerous natural hazards that can cause considerable damage to human life and properties (Yin et al. 2009; Pradhan and Lee 2010; Jebur et al. 2014).

Keywords

Support Vector Machine Radial Basis Function Analytic Hierarchy Process Landslide Susceptibility Area Under Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akgun, A., Sezer, E. A., Nefeslioglu, H. A., Gokceoglu, C., & Pradhan, B. (2012). An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computers & Geosciences, 38(1), 23–34.CrossRefGoogle Scholar
  2. Ali, S., & Smith, K. A. (2003). Automatic parameter selection for polynomial kernel. In: Information Reuse and Integration, 2003. IRI 2003. IEEE International Conference on (pp. 243-249). IEEE.Google Scholar
  3. Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains, Central Japan. Geomorphology, 65(1), 15–31.CrossRefGoogle Scholar
  4. Baeza, C., & Corominas, J. (2001). Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26(12), 1251–1263.CrossRefGoogle Scholar
  5. Ballabio, C., & Sterlacchini, S. (2012). Support vector machines for landslide susceptibility mapping: The Staffora river basin case study, Italy. Mathematical Geosciences, 44(1), 47–70.CrossRefGoogle Scholar
  6. Barredo, J., Benavides, A., Hervás, J., & van Westen, C. J. (2000). Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinformation, 2(1), 9–23.CrossRefGoogle Scholar
  7. Belousov, A., Verzakov, S., & Von Frese, J. (2002). Applicational aspects of support vector machines. Journal of Chemometrics, 16(8–10), 482–489.CrossRefGoogle Scholar
  8. Bonham-Carter, G. (1994). Geographic information systems for geoscientists: Modelling with GIS (Vol. 13). UK: Elsevier.Google Scholar
  9. Brenning, A. (2005). Spatial prediction models for landslide hazards: Review, comparison and evaluation. Natural Hazards and Earth System Science, 5(6), 853–862.CrossRefGoogle Scholar
  10. Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, Ø. B. (2013). Regional prediction of landslide hazard using probability analysis of intense rainfall in the Hoa Binh province, Vietnam. Natural Hazards, 66(2), 707–730.CrossRefGoogle Scholar
  11. Chacón, J., Irigaray, C., Fernandez, T., & El Hamdouni, R. (2006). Engineering geology maps: Landslides and geographical information systems. Bulletin of Engineering Geology and the Environment, 65(4), 341–411.CrossRefGoogle Scholar
  12. Chau, K., Wu, C., & Li, Y. (2005). Comparison of several flood forecasting models in Yangtze River. Journal of Hydrologic Engineering, 10(6), 485–491.CrossRefGoogle Scholar
  13. Chen, F.-W., & Liu, C.-W. (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10(3), 209–222.CrossRefGoogle Scholar
  14. Chi, K. -H., Park, N. -W., & Chung, C. -J. (2002). Fuzzy logic integration for landslide hazard mapping using spatial data from Boeun, Korea. International archives of photogrammetry remote sensing and spatial information sciences, 34(4), 54–59.Google Scholar
  15. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.Google Scholar
  16. Cui, X., Zhao, X., Ji, M., Wang, S., & Zhang, P. (2010). Research on landslide prediction based on support vector model. In: Computer Design and Applications (ICCDA), 2010 International Conference on (Vol. 3, pp. V3-540–V543-544): IEEE.Google Scholar
  17. Dai, F., & Lee, C. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213–228.CrossRefGoogle Scholar
  18. Damaševičius, R. (2010). Optimization of SVM parameters for recognition of regulatory DNA sequences. Top, 18(2), 339–353.CrossRefGoogle Scholar
  19. Ghalkhani, H., Golian, S., Saghafian, B., Farokhnia, A., & Shamseldin, A. (2013). Application of surrogate artificial intelligent models for real-time flood routing. Water and Environment Journal, 27(4), 535–548.CrossRefGoogle Scholar
  20. Gokceoglu, C., & Sezer, E. (2009). A statistical assessment on international landslide literature (1945–2008). Landslides, 6(4), 345–351.CrossRefGoogle Scholar
  21. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Detection of vertical slope movement in highly vegetated tropical area of Gunung pass landslide, Malaysia, using L-band InSAR technique. Geosciences Journal, 18(1), 61–68.CrossRefGoogle Scholar
  22. Konadu, D., & Fosu, C. (2009). Digital elevation models and GIS for watershed modelling and flood prediction–a case study of Accra Ghana. In: Appropriate Technologies for Environmental Protection in the Developing World (pp. 325–332). The Netherlands: Springer.Google Scholar
  23. Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.CrossRefGoogle Scholar
  24. Lifeng, Y., & Youshui, Z. (2006). Debris flow hazard assessment based on support vector machine. Wuhan University Journal of Natural Sciences, 11(4), 897–900.CrossRefGoogle Scholar
  25. Lineback Gritzner, M., Marcus, W. A., Aspinall, R., & Custer, S. G. (2001). Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology, 37(1), 149–165.CrossRefGoogle Scholar
  26. Liu, Y., & De Smedt, F. (2005). Flood modeling for complex terrain using GIS and remote sensed information. Water Resources Management, 19(5), 605–624.CrossRefGoogle Scholar
  27. Magliulo, P., Di Lisio, A., Russo, F., & Zelano, A. (2008). Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: A case study in southern Italy. Natural Hazards, 47(3), 411–435.CrossRefGoogle Scholar
  28. Marjanović, M., Kovačević, M., Bajat, B., & Voženílek, V. (2011). Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology, 123(3), 225–234.CrossRefGoogle Scholar
  29. Micheletti, N., Foresti, L., Kanevski, M., Pedrazzini, A., & Jaboyedoff, M. (2011). Landslide susceptibility mapping using adaptive support vector machines and feature selection (Master Thesis submitted to University of Lausanne Faculty of Geosciences and Environment for the Degree of Master of Science in Environmental Geosciences, 99p).Google Scholar
  30. Mu, T., & Nandi, A. K. (2007). Breast cancer detection from FNA using SVM with different parameter tuning systems and SOM–RBF classifier. Journal of the Franklin Institute, 344(3), 285–311.CrossRefGoogle Scholar
  31. Oh, H.-J., & Pradhan, B. (2011). Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Computers & Geosciences, 37(9), 1264–1276.CrossRefGoogle Scholar
  32. Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443–1464.CrossRefGoogle Scholar
  33. Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349–369.CrossRefGoogle Scholar
  34. Pourghasemi, H. R., Mohammady, M., & Pradhan, B. (2012). Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97, 71–84.CrossRefGoogle Scholar
  35. Pozdnoukhov, A. (2009). Machine learning for spatial environmental data: Theory, applications, and software. Switzerland: EPFL press.Google Scholar
  36. Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2), 301–320.CrossRefGoogle Scholar
  37. Pradhan, B. (2011). Use of GIS-based fuzzy logic relations and its cross application to produce landslide susceptibility maps in three test areas in Malaysia. Environmental Earth Sciences, 63(2), 329–349.CrossRefGoogle Scholar
  38. Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.CrossRefGoogle Scholar
  39. Pradhan, B., & Buchroithner, M. F. (2010). Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environmental and Engineering Geoscience, 16(2), 107–126.CrossRefGoogle Scholar
  40. Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.CrossRefGoogle Scholar
  41. Ramani, S. E., Pitchaimani, K., & Gnanamanickam, V. R. (2011). GIS based landslide susceptibility mapping of Tevankarai Ar sub-watershed, Kodaikkanal, India using binary logistic regression analysis. Journal of Mountain Science, 8(4), 505–517.CrossRefGoogle Scholar
  42. Regmi, A. D., Yoshida, K., Pourghasemi, H. R., DhitaL, M. R., & Pradhan, B. (2014). Landslide susceptibility mapping along Bhalubang—Shiwapur area of mid-Western Nepal using frequency ratio and conditional probability models. Journal of Mountain Science, 11(5), 1266–1285.CrossRefGoogle Scholar
  43. Regmi, N. R., Giardino, J. R., & Vitek, J. D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1), 172–187.CrossRefGoogle Scholar
  44. Samui, P. (2008). Slope stability analysis: A support vector machine approach. Environmental Geology, 56(2), 255–267.CrossRefGoogle Scholar
  45. Sarkar, S., Kanungo, D. P., Patra, A., & Kumar, P. (2008). GIS based spatial data analysis for landslide susceptibility mapping. Journal of Mountain Science, 5(1), 52–62.CrossRefGoogle Scholar
  46. Song, S., Zhan, Z., Long, Z., Zhang, J., & Yao, L. (2011). Comparative study of SVM methods combined with voxel selection for object category classification on fMRI data. PLoS ONE, 6(2), e17191.CrossRefGoogle Scholar
  47. Subramanian, N., & Ramanathan, R. (2012). A review of applications of analytic hierarchy process in operations management. International Journal of Production Economics, 138(2), 215–241.CrossRefGoogle Scholar
  48. Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.CrossRefGoogle Scholar
  49. Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical Problems in Engineering, 2012(974638), 26.Google Scholar
  50. Tilmant, A., Vanclooster, M., Duckstein, L., & Persoons, E. (2002). Comparison of fuzzy and nonfuzzy optimal reservoir operating policies. Journal of Water Resources Planning and Management, 128(6), 390–398.CrossRefGoogle Scholar
  51. Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118, 124–135.CrossRefGoogle Scholar
  52. Van Westen, C. J. (2000). The modelling of landslide hazards using GIS. Surveys In Geophysics, 21(2–3), 241–255.CrossRefGoogle Scholar
  53. Wan, S., & Lei, T. C. (2009). A knowledge-based decision support system to analyze the debris-flow problems at Chen-Yu-Lan River, Taiwan. Knowledge-Based Systems, 22(8), 580–588.CrossRefGoogle Scholar
  54. Wang, Y.-T., Seijmonsbergen, A. C., Bouten, W., & Chen, Q.-T. (2015). Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data. Journal of Mountain Science, 12(2), 268–288.CrossRefGoogle Scholar
  55. Westen, C. V., & Terlien, M. (1996). An approach towards deterministic landslide hazard analysis in GIS. A case study from Manizales (Colombia). Earth Surface Processes and Landforms, 21(9), 853–868.Google Scholar
  56. Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145, 70–80.CrossRefGoogle Scholar
  57. Yao, X., Tham, L., & Dai, F. (2008). Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China. Geomorphology, 101(4), 572–582.CrossRefGoogle Scholar
  58. Yilmaz, I. (2009). A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bulletin of Engineering Geology and the Environment, 68(3), 297–306.CrossRefGoogle Scholar
  59. Yin, Y., Wang, F., & Sun, P. (2009). Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6(2), 139–152.CrossRefGoogle Scholar
  60. Youssef, A. M., Pradhan, B., Pourghasemi, H. R., & Abdullahi, S. (2015). Landslide susceptibility assessment at Wadi Jawrah Basin, Jizan region, Saudi Arabia using two bivariate models in GIS. Geosciences Journal, 1–21.Google Scholar
  61. Zhu, X., Zhang, S., Jin, Z., Zhang, Z., & Xu, Z. (2011). Missing value estimation for mixed-attribute data sets. Knowledge and Data Engineering, IEEE Transactions on, 23(1), 110–121.CrossRefGoogle Scholar
  62. Zhuang, L., & Dai, H. (2006). Parameter optimization of kernel-based one-class classifier on imbalance learning. Journal of Computers, 1(7), 32–40.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Biswajeet Pradhan
    • 1
    Email author
  • Mustafa Neamah Jebur
    • 1
  • Saleh Abdullahi
    • 1
  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations