Advertisement

Landslide Susceptibility Modeling: Optimization and Factor Effect Analysis

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Sameen
Chapter

Abstract

Landslides are considered devastating natural geohazards worldwide; they pose significant threats to human life and result in socioeconomic losses in many countries (Mahalingam et al. 2016).

Keywords

Support Vector Machine Normalize Difference Vegetation Index Random Forest Landslide Susceptibility Support Vector Machine Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abe, S. (2005). Support vector machines for pattern classification (Vol. 2). London: Springer.Google Scholar
  2. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.Google Scholar
  3. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression trees. Boca Raton: CRC press.Google Scholar
  4. Brenning, A. (2005). Spatial prediction models for landslide hazards: review, comparison and evaluation. Natural Hazards and Earth System Science, 5(6), 853–862.Google Scholar
  5. Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2015). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 1–18.Google Scholar
  6. Costello, A. B. (2009). Getting the most from your analysis. Pan, 12(2), 131–146.Google Scholar
  7. Erener, A., & Düzgün, H. S. B. (2010). Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of More and Romsdal (Norway). Landslides, 7(1), 55–68.CrossRefGoogle Scholar
  8. Gaprindashvili, G., & Van Westen, C. J. (2016). Generation of a national landslide hazard and risk map for the country of Georgia. Natural Hazards, 80(1), 69–101.Google Scholar
  9. Garrosa, E., Rainho, C., Moreno-Jimenez, B., & Monteiro, M. J. (2010). The relationship be-tween job stressors, hardy personality, coping resources and burnout in a sample of nurs-es: A correlational study at two time points. International Journal of Nursing Studies, 47(2), 205–215.Google Scholar
  10. Gottlieb, J., Puchta, M., & Solnon, C. (2003). A study of greedy, local search, and ant colony optimization approaches for car sequencing problems. In Applications of evolutionary computing (pp. 246–257). Berlin Heidelberg: Springer.Google Scholar
  11. Guo, D., & Hamada, M. (2013). Qualitative and quantitative analysis on landslide influential factors during Wenchuan earthquake: A case study in Wenchuan County. Engineering Geology, 152(1), 202–209.Google Scholar
  12. Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.Google Scholar
  13. Hussin, H. Y., Zumpano, V., Reichenbach, P., Sterlacchini, S., Micu, M., van Westen, C., & Bălteanu, D. (2016). Different landslide sampling strategies in a grid-based bi-variate statistical susceptibility model. Geomorphology, 253, 508–523.Google Scholar
  14. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.Google Scholar
  15. Kasai, M., Ikeda, M., Asahina, T., & Fujisawa, K. (2009). LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology, 113(1), 57–69.Google Scholar
  16. Kayastha, P. (2015). Landslide susceptibility mapping and factor effect analysis using frequency ratio in a catchment scale: A case study from Garuwa sub-basin, East Nepal. Arabian Journal of Geosciences, 8(10), 8601–8613.Google Scholar
  17. Khan, Y. A. (2010). Monitoring of hill-slope movement due to rainfall at Gunung Pass of Cameron Highland district of Peninsular Malaysia. International Journal of Earth Sciences and Engineering, 3, 06–12.Google Scholar
  18. Mahalingam, R., & Olsen, M. J. (2015). Evaluation of the influence of source and spatial reso-lution of DEMs on derivative products used in landslide mapping. Geomatics, Natural Hazards and Risk, 1–21.Google Scholar
  19. Mahalingam, R., Olsen, M. J., & O’Banion, M. S. (2016). Evaluation of landslide susceptibility mapping techniques using lidar-derived conditioning factors (Oregon case study). Geomatics, Natural Hazards and Risk, 1–24.Google Scholar
  20. Meten, M., PrakashBhandary, N., & Yatabe, R. (2015). Effect of landslide factor combinations on the prediction accuracy of landslide susceptibility maps in the Blue Nile Gorge of Central Ethiopia. Geoenvironmental Disasters, 2(1), 1–17.Google Scholar
  21. Micheletti, N., Foresti, L., Robert, S., Leuenberger, M., Pedrazzini, A., Jaboyedoff, M., & Kanevski, M. (2014). Machine learning feature selection methods for landslide susceptibility mapping. Mathematical Geosciences, 46(1), 33–57.Google Scholar
  22. Moosavi, V., & Niazi, Y. (2015). Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping. Landslides, 1–18.Google Scholar
  23. Pereira, S. D. S., Zêzere, J. L. G. M. D., & Bateira, C. (2013). Technical note: Assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Natural Hazards and Earth System Sciences, n. 12 (2012), 979–988.Google Scholar
  24. Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers and Geosciences, 51, 350–365.Google Scholar
  25. Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 3(11), 1–15.Google Scholar
  26. Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30‏.Google Scholar
  27. Qin, C. Z., Bao, L. L., Zhu, A. X., Wang, R. X., & Hu, X. M. (2013). Uncertainty due to DEM error in landslide susceptibility mapping. International Journal of Geographical Information Science, 27(7), 1364–1380.Google Scholar
  28. Roscoe, B. A., Hopke, P. K., Dattner, S. L., & Jenks, J. M. (1982). The use of principal component factor analysis to interpret particulate compositional data sets. Journal of the Air Pollution Control Association, 32(6), 637–642.Google Scholar
  29. Vasu, N. N., & Lee, S. R. (2016). A hybrid feature selection algorithm integrating an extreme learning machine for landslide susceptibility modeling of Mt. Woomyeon, South Korea. Geomorphology, 263, 50–70.Google Scholar
  30. Vladimir, V. N., & Vapnik, V. (1995). The nature of statistical learning theory.Google Scholar
  31. Yao, X., Tham, L. G., & Dai, F. C. (2008). Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology, 101(4), 572–582.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations