Skip to main content

Debris Flow Source Identification in Tropical Dense Forest Using Airborne Laser Scanning Data and Flow-R Model

  • Chapter
  • First Online:
Book cover Laser Scanning Applications in Landslide Assessment

Abstract

Debris flow and related landslide processes can cause significant hazard to human kind and economic loss annually. Debris flow is a type of mass movement or landslide (Kuriakose 2006; U.S Geological Survey 2004). Varnes (1978) defined debris flow as a sudden mass movement, in which a combination of loose soil, rock, organic matter and water moves as a flowing slurry. In an earlier paper, Hutchinson (1988) defined debris flow as a mixture of sand, silt, clay and coarse materials, such as gravel, cobbles and boulders, with variable amounts of water that travels down under the influence of gravity in high density. Youssef and Pradhan (2013) specified that moving downward the slope causes debris flows when poorly sorted sediments or loose overburden materials are saturated with water. Several terms related to mass movement include debris floods, lahars, debris torrents or debris slides (Varnes 1978; Johnson 1984; Pierson and Costa 1987; Pradhan and Lee 2009, 2010a; Youssef et al. 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulwahid, W. M., & Pradhan, B. (2016). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Berlin: Springer-Verlag.

    Google Scholar 

  • Blais-Stevens, A., & Behnia, P. (2016). Debris flow susceptibility mapping using a qualitative.heuristic method and flow-R along the Yukon Alaska highway corridor, Canada. Natural Hazards Earth System Sciences, 16, 449–462.

    Article  Google Scholar 

  • Chen, H. X., Zhang, L. M., Chang, D. S., & Zhang, S. (2012). Mechanisms and runout characteristics of the rainfall-triggered debris flow in Xiaojiagou in Sichuan Province, China. Natural Hazards, 62, 1037–1057.

    Article  Google Scholar 

  • Chow, W. S., Zakaria, M., Ferdaus, A., & Nurzaidi, A. (2003). Geological terrain mapping. JMG unpublished report, JMG.SWP.GS 16/2003, pp. 1–42.

    Google Scholar 

  • Cruden, D., & Varnes, D. J. (1996). Landslide types and processes. In A. Turner & R. Shuster (Eds.), Landslides: Investigation and mitigation (pp. 36–75). Washington, DC: National Academy Press.

    Google Scholar 

  • Dai, F. C., & Lee, C. F. (2001). Terrain-based mapping of landslide susceptibility using a geographical information system: A case study. Canadian Geotechnical Journal, 38, 911–923. doi:10.1139/cgi-38-5-911

    Article  Google Scholar 

  • Delmonaco, G., Leoni, G., Margottini, C., Puglisi, C., & Spizzichino, D. (2003). Large scale debris-flow hazard assessment: A geotechnical ap-proach and GIS modelling. Natural Hazard Earth Systems, 3, 443–455.

    Google Scholar 

  • Elkadiri, R., & Sultan, M., Youssef, A. M., Elbayoumi, T., Chase, R., Ali, B., Al-katheeri, M. M., & Survey, S. G. (2014). A remote-sensing-based approach for debris-flow susceptibility assessment using artificial neural networks and logistic regression modeling. IEEE Journals of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 4818–4835.

    Google Scholar 

  • Erskine, R., Green, T., Ramirez, J., & MacDonald, L. (2006). Comparison of grid-based algorithms for computing upslope contributing area. Water Resources Research, 42.

    Google Scholar 

  • Evans, S. G. (1982). Landslides and surficial deposits in urban areas of British Columbia: A review. Canadian Geotechnical Journal, 19, 269–288.

    Article  Google Scholar 

  • Fischer, L., Rubensdotter, L., Sletten, K., Stalsberg, K., Melchiorre, C., Horton, P., & Jaboyedoff, M. (2012). Debris flow modeling for susceptibility mapping at regional to national scale in Norway. UK: Taylor Francis Group, pp. 723–729.

    Google Scholar 

  • Gabet, E. J., & Mudd, S. M. (2006). The mobilization of debris flows from shallow landslides. Geomorphology, 74, 207–218. Available from: www.elsevier.com/locate/geomorph

  • Harris, R. (2008). Geospatial assessment of debris flow hazards for Cedar Valley, Utah [Internet]. University of Redlands. Available from: http://inspire.redlands.edu/gis_gradproj

  • Heinimann, H. R., Hollenstein, K., Kienholz, H., Krummenacher, B., & Mani, P. (1998). Methoden zur analyse und Bewertung von Naturgefahren. Wald und Landschaft (BUWAL), Bern: Bundesamt für Umwelt.

    Google Scholar 

  • Horton, P., Jaboyedoff, M., & Bardou, E. (2008). Debris flow susceptibility mapping at a regional scale. In J. Locat, D. Perret, D. Turmel, D. Demers & S. Leroueil (Eds.), Proceedings of the 4th Canadian conference on geohazards, Qu´ebec, Canada, May 20–24, 2008, pp. 339–406.

    Google Scholar 

  • Horton, P., Jaboyedoff, M., Rudaz, B., & Zimmermann, M. (2013). Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth Systems Sciences, 13, 869–885.

    Article  Google Scholar 

  • Horton, P., Jaboyedoff, M., Zimmermann, M., Mazotti, B., & Longchamp, C. (2011). Flow-R, a model for debris flow susceptibility mapping at a regional scale—some case studies. In Proceedings of 5th international conference debris-flow hazards Mitig Mech Predict Assess, pp. 875–884.

    Google Scholar 

  • Huat, L. T., & Ali, F. (2012). Application of air borne laser scanning and ortho-rectified photograph geomorphological mapping works. Electronic Journal of Geotechnical Engineering, 17 H, 1015–1023.

    Google Scholar 

  • Hutchinson, J. N. (1988). General report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In C. Bonnard (Ed.), Proceedings of fifth international symposium on landslides (Vol. 1, pp. 3–35). Rotterdam: Balkema.

    Google Scholar 

  • Jaboyedoff, M., Choffet, C. H., Derron, M.-H., Horton, P., Loye, A., Longchamp, C., Mazotti, B., Michoud, C., & Pedrazzini, A. (2012). Preliminary slope mass movements susceptibility mapping using DEM and LiDAR DEM. In B. Pradhan & M. Buchroithner (Eds.), Terrigenous mass movements: Detection, modelling, early warning and mitigation using geoinformation technology (Vol. 5, pp. 109–170). Berlin Heidelberg, Germany, Berlin: Springer-Verlag. doi:10.1007/978-3-642-25495-6

  • Jamaludin, S., Abdullah, C. H., & Kasim, N. (2014). Rainfall intensity and duration for debris flow triggering in Peninsular Malaysia. Landslide Sci a safer geoenvironment. Switzerland: Springer International Publishing. 1.

    Google Scholar 

  • Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing Environment [Internet], 152, 150–165. Available from: doi:10.1016/j.rse.2014.05.013

  • Johnson, A. M. (1984). Debris flow. In: D. Brunsden, D. B. Prior (Eds.), Slope instability (pp. 257–361). New York: Wiley.

    Google Scholar 

  • Kasim, N., Taib, K. A., Mukhlisin, M., & Kasa, A. (2016). Triggering mechanism and characteristic of debris flow in Peninsular Malaysia. American Journal of Engineering and Research, 112–119.

    Google Scholar 

  • Kuriakose, S. L. (2006). Effect of vegetation on debris flow initiation. The Netherlands: International Institute For Geo-Information Science And Earth Observation Enschede.

    Google Scholar 

  • Martinaszabova & Stanislavhroncek. (2015). Investigating geohazards lidar reveals the turbulent life of mountain slopes. LiDAR Magazine, 5(6), 5–7. Retrieved from www.lidarnews.com

  • Nettleton, I. M., Martin, S., Hencher, S., & Moore, R. (2005). 4 4.1 Debris flow types and mechanisms. Earth, (August). Retrieved from www.scotland.gov.uk

  • Ortigao, J. A. R., & Kanji, M. A. (2004). Landslide classification and risk management. In J. A. R. Oritgao & A. S. F. J. Sayao (Eds.), Handbook of slope stabilization. Heidelberg: Springer Verlag.

    Google Scholar 

  • Park, D., Lee, S., Nikhil, N. V., Kang, S., & Park, J. (2013). Debris flow hazard zonation by probabilistic analysis (Mt. Woomyeon, Seoul, Korea). International Journal of Innovative Research in Science, Engineering Technology [Internet], 2, 2381–2390. Available from: www.ijirset.com

  • Park, D. W., Lee, S. R., Vasu, N. N., Kang, S. H., & Park, J. Y. (2016). Coupled model for simulation of landslides and debris flows at local scale. Natural Hazards [Internet], 81, 1653–1682. Available from: doi:10.1007/s11069-016-2150-2

  • Pierson, T. C., & Costa, J. E. (1987). A rheologic classification of subaerial sediment-water flows. In J. E. Costa & G. F. Wieczorek (Eds.), Debris flows/avalanches: Process, recognition and mitigation. Reviews in Engineering Geology. Geol Soc Am VII:1–12.

    Google Scholar 

  • Pimiento, E. (2010a). Shallow landslide susceptibility: Modelling and validation. [place unknown]. Sweden: Lund University.

    Google Scholar 

  • Pimiento, E. (2010b). Shallow landslide susceptibility; Modeling and validation. Master Thesis, Lund University.

    Google Scholar 

  • Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 3(11), 1–15.

    Google Scholar 

  • Pradhan, B., & Lee, S. (2010a). Regional landslide susceptibility analysis using back- propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.

    Article  Google Scholar 

  • Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron [Internet], pp. 13–30. Available from: http://link.springer.com/article/10.1007/s10346-009-0183-2#page-1

  • Puglisi, C., Falconi, L., Lentini, A., Leoni, G., & Prada, C. R. (2011). Debris flow risk assessment in the Aguas Calientes Village (Cusco, Perù) Debris flow risk assessment in the Aguas Calientes. In Proceedings of second world landslide forum [Internet]. [place unknown], pp. 1–6. Available from: https://www.researchgate.net/publication/266688811

  • Quinn, P., Beven, K., & Lamb, R. (1995). The in(a/tanβ) index: How to calculate it and howto use it within the topmodel framework. Hydrological Processes, 9, 161–182. doi:10.1002/hyp.3360090204.

    Article  Google Scholar 

  • Rahman, H. A. (2014). Brief review an overview of environmental disaster in Malaysia and Preparedness Strategies. Iranian Journal of Public Health [Internet], 43:17–24. Available from: http://ijph.tums.ac.ir

  • Realino, V., Llanes, F., Resma, M. D., Obrique, J., Quina, C., Gacusan, R., et al. (2015). Debris flow numerical modelling using high resolution digital terrain models of Ilocos Sur, Philippines. Nationwide Oper Assess Hazards [Internet]. 4:1–7. Available from: http://blog.noah.dost.gov.ph/2015/07/21/debris-flow-numerical-modelling-using-high-resolution-digital-terrain-models-of-ilocos-sur-philippines/

  • Rickenmann, D. (2016). Debris-flow hazard assessment and methods applied in engineering practice. International Journal of Erosion Control Engineering, 9, 80–90.

    Google Scholar 

  • Rickenmann, D., & Zimmermann, M. (1993). The 1987 debris flows inSwitzerland: documentation and analysis. Geomorphology, 8, 175–189. doi:10.1016/0169-555X(93)90036-2.

    Article  Google Scholar 

  • Takahashi, T. (1981). Debris flow. Annual Review of Fluid Mechanics, 13(1), 57–77.

    Article  Google Scholar 

  • Takahashi, T. (2007). Estimation of potential debris flows and their hazardous zones: Soft countermeasures for a disaster. Journal of Natural Disaster Science, 3, 57–89.

    Google Scholar 

  • U.S Geological Survey. (2004). Landslide types and processes. Online http://pubs.usgs.gov/fs/2004/3072/fs-2004-3072.html

  • Varnes DJ. 1978. Slope movement types and processes. In: Schuster RL, Krizek RJ, editors. Landslides analysis and control, transportation. Special Report 176. Washington (DC): Transport Research Board, National Research Council; p. 1133.

    Google Scholar 

  • Youssef, A. M., & Pradhan, B. (2013). Debris flow impact assessment caused by 14 April 2012 rainfall along the Al-Hada Highway. Saudi Soc Geosci: Kingdom of Saudi Arabia using high-resolution satellite imagery.

    Google Scholar 

  • Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the Jelapang Corridor of the North-South Expressway in Malaysia using high resolution airborne LiDAR data. Arab J Geosci., 8, 9789–9800.

    Article  Google Scholar 

  • Zhang, W., & Montgomery, D. (1994). Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Re- sour. Res., 30, 1019–1028. doi:10.1029/93WR03553

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pradhan, B., Bakar, S.B.A. (2017). Debris Flow Source Identification in Tropical Dense Forest Using Airborne Laser Scanning Data and Flow-R Model. In: Pradhan, B. (eds) Laser Scanning Applications in Landslide Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-55342-9_5

Download citation

Publish with us

Policies and ethics