Advertisement

Debris Flow Source Identification in Tropical Dense Forest Using Airborne Laser Scanning Data and Flow-R Model

  • Biswajeet PradhanEmail author
  • Suzana Binti Abu Bakar
Chapter

Abstract

Debris flow and related landslide processes can cause significant hazard to human kind and economic loss annually. Debris flow is a type of mass movement or landslide (Kuriakose 2006; U.S Geological Survey 2004). Varnes (1978) defined debris flow as a sudden mass movement, in which a combination of loose soil, rock, organic matter and water moves as a flowing slurry. In an earlier paper, Hutchinson (1988) defined debris flow as a mixture of sand, silt, clay and coarse materials, such as gravel, cobbles and boulders, with variable amounts of water that travels down under the influence of gravity in high density. Youssef and Pradhan (2013) specified that moving downward the slope causes debris flows when poorly sorted sediments or loose overburden materials are saturated with water. Several terms related to mass movement include debris floods, lahars, debris torrents or debris slides (Varnes 1978; Johnson 1984; Pierson and Costa 1987; Pradhan and Lee 2009, 2010a; Youssef et al. 2013).

Keywords

Debris Flow Digital Elevation Model Source Area Slope Angle Plan Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdulwahid, W. M., & Pradhan, B. (2016). Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR). Berlin: Springer-Verlag.Google Scholar
  2. Blais-Stevens, A., & Behnia, P. (2016). Debris flow susceptibility mapping using a qualitative.heuristic method and flow-R along the Yukon Alaska highway corridor, Canada. Natural Hazards Earth System Sciences, 16, 449–462.CrossRefGoogle Scholar
  3. Chen, H. X., Zhang, L. M., Chang, D. S., & Zhang, S. (2012). Mechanisms and runout characteristics of the rainfall-triggered debris flow in Xiaojiagou in Sichuan Province, China. Natural Hazards, 62, 1037–1057.CrossRefGoogle Scholar
  4. Chow, W. S., Zakaria, M., Ferdaus, A., & Nurzaidi, A. (2003). Geological terrain mapping. JMG unpublished report, JMG.SWP.GS 16/2003, pp. 1–42.Google Scholar
  5. Cruden, D., & Varnes, D. J. (1996). Landslide types and processes. In A. Turner & R. Shuster (Eds.), Landslides: Investigation and mitigation (pp. 36–75). Washington, DC: National Academy Press.Google Scholar
  6. Dai, F. C., & Lee, C. F. (2001). Terrain-based mapping of landslide susceptibility using a geographical information system: A case study. Canadian Geotechnical Journal, 38, 911–923. doi: 10.1139/cgi-38-5-911 CrossRefGoogle Scholar
  7. Delmonaco, G., Leoni, G., Margottini, C., Puglisi, C., & Spizzichino, D. (2003). Large scale debris-flow hazard assessment: A geotechnical ap-proach and GIS modelling. Natural Hazard Earth Systems, 3, 443–455.Google Scholar
  8. Elkadiri, R., & Sultan, M., Youssef, A. M., Elbayoumi, T., Chase, R., Ali, B., Al-katheeri, M. M., & Survey, S. G. (2014). A remote-sensing-based approach for debris-flow susceptibility assessment using artificial neural networks and logistic regression modeling. IEEE Journals of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 4818–4835.Google Scholar
  9. Erskine, R., Green, T., Ramirez, J., & MacDonald, L. (2006). Comparison of grid-based algorithms for computing upslope contributing area. Water Resources Research, 42.Google Scholar
  10. Evans, S. G. (1982). Landslides and surficial deposits in urban areas of British Columbia: A review. Canadian Geotechnical Journal, 19, 269–288.CrossRefGoogle Scholar
  11. Fischer, L., Rubensdotter, L., Sletten, K., Stalsberg, K., Melchiorre, C., Horton, P., & Jaboyedoff, M. (2012). Debris flow modeling for susceptibility mapping at regional to national scale in Norway. UK: Taylor Francis Group, pp. 723–729.Google Scholar
  12. Gabet, E. J., & Mudd, S. M. (2006). The mobilization of debris flows from shallow landslides. Geomorphology, 74, 207–218. Available from: www.elsevier.com/locate/geomorph
  13. Harris, R. (2008). Geospatial assessment of debris flow hazards for Cedar Valley, Utah [Internet]. University of Redlands. Available from: http://inspire.redlands.edu/gis_gradproj
  14. Heinimann, H. R., Hollenstein, K., Kienholz, H., Krummenacher, B., & Mani, P. (1998). Methoden zur analyse und Bewertung von Naturgefahren. Wald und Landschaft (BUWAL), Bern: Bundesamt für Umwelt.Google Scholar
  15. Horton, P., Jaboyedoff, M., & Bardou, E. (2008). Debris flow susceptibility mapping at a regional scale. In J. Locat, D. Perret, D. Turmel, D. Demers & S. Leroueil (Eds.), Proceedings of the 4th Canadian conference on geohazards, Qu´ebec, Canada, May 20–24, 2008, pp. 339–406.Google Scholar
  16. Horton, P., Jaboyedoff, M., Rudaz, B., & Zimmermann, M. (2013). Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth Systems Sciences, 13, 869–885.CrossRefGoogle Scholar
  17. Horton, P., Jaboyedoff, M., Zimmermann, M., Mazotti, B., & Longchamp, C. (2011). Flow-R, a model for debris flow susceptibility mapping at a regional scale—some case studies. In Proceedings of 5th international conference debris-flow hazards Mitig Mech Predict Assess, pp. 875–884.Google Scholar
  18. Huat, L. T., & Ali, F. (2012). Application of air borne laser scanning and ortho-rectified photograph geomorphological mapping works. Electronic Journal of Geotechnical Engineering, 17 H, 1015–1023.Google Scholar
  19. Hutchinson, J. N. (1988). General report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In C. Bonnard (Ed.), Proceedings of fifth international symposium on landslides (Vol. 1, pp. 3–35). Rotterdam: Balkema.Google Scholar
  20. Jaboyedoff, M., Choffet, C. H., Derron, M.-H., Horton, P., Loye, A., Longchamp, C., Mazotti, B., Michoud, C., & Pedrazzini, A. (2012). Preliminary slope mass movements susceptibility mapping using DEM and LiDAR DEM. In B. Pradhan & M. Buchroithner (Eds.), Terrigenous mass movements: Detection, modelling, early warning and mitigation using geoinformation technology (Vol. 5, pp. 109–170). Berlin Heidelberg, Germany, Berlin: Springer-Verlag. doi: 10.1007/978-3-642-25495-6
  21. Jamaludin, S., Abdullah, C. H., & Kasim, N. (2014). Rainfall intensity and duration for debris flow triggering in Peninsular Malaysia. Landslide Sci a safer geoenvironment. Switzerland: Springer International Publishing. 1.Google Scholar
  22. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing Environment [Internet], 152, 150–165. Available from: doi: 10.1016/j.rse.2014.05.013
  23. Johnson, A. M. (1984). Debris flow. In: D. Brunsden, D. B. Prior (Eds.), Slope instability (pp. 257–361). New York: Wiley.Google Scholar
  24. Kasim, N., Taib, K. A., Mukhlisin, M., & Kasa, A. (2016). Triggering mechanism and characteristic of debris flow in Peninsular Malaysia. American Journal of Engineering and Research, 112–119.Google Scholar
  25. Kuriakose, S. L. (2006). Effect of vegetation on debris flow initiation. The Netherlands: International Institute For Geo-Information Science And Earth Observation Enschede.Google Scholar
  26. Martinaszabova & Stanislavhroncek. (2015). Investigating geohazards lidar reveals the turbulent life of mountain slopes. LiDAR Magazine, 5(6), 5–7. Retrieved from www.lidarnews.com
  27. Nettleton, I. M., Martin, S., Hencher, S., & Moore, R. (2005). 4 4.1 Debris flow types and mechanisms. Earth, (August). Retrieved from www.scotland.gov.uk
  28. Ortigao, J. A. R., & Kanji, M. A. (2004). Landslide classification and risk management. In J. A. R. Oritgao & A. S. F. J. Sayao (Eds.), Handbook of slope stabilization. Heidelberg: Springer Verlag.Google Scholar
  29. Park, D., Lee, S., Nikhil, N. V., Kang, S., & Park, J. (2013). Debris flow hazard zonation by probabilistic analysis (Mt. Woomyeon, Seoul, Korea). International Journal of Innovative Research in Science, Engineering Technology [Internet], 2, 2381–2390. Available from: www.ijirset.com
  30. Park, D. W., Lee, S. R., Vasu, N. N., Kang, S. H., & Park, J. Y. (2016). Coupled model for simulation of landslides and debris flows at local scale. Natural Hazards [Internet], 81, 1653–1682. Available from: doi: 10.1007/s11069-016-2150-2
  31. Pierson, T. C., & Costa, J. E. (1987). A rheologic classification of subaerial sediment-water flows. In J. E. Costa & G. F. Wieczorek (Eds.), Debris flows/avalanches: Process, recognition and mitigation. Reviews in Engineering Geology. Geol Soc Am VII:1–12.Google Scholar
  32. Pimiento, E. (2010a). Shallow landslide susceptibility: Modelling and validation. [place unknown]. Sweden: Lund University.Google Scholar
  33. Pimiento, E. (2010b). Shallow landslide susceptibility; Modeling and validation. Master Thesis, Lund University.Google Scholar
  34. Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 3(11), 1–15.Google Scholar
  35. Pradhan, B., & Lee, S. (2010a). Regional landslide susceptibility analysis using back- propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.CrossRefGoogle Scholar
  36. Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron [Internet], pp. 13–30. Available from: http://link.springer.com/article/10.1007/s10346-009-0183-2#page-1
  37. Puglisi, C., Falconi, L., Lentini, A., Leoni, G., & Prada, C. R. (2011). Debris flow risk assessment in the Aguas Calientes Village (Cusco, Perù) Debris flow risk assessment in the Aguas Calientes. In Proceedings of second world landslide forum [Internet]. [place unknown], pp. 1–6. Available from: https://www.researchgate.net/publication/266688811
  38. Quinn, P., Beven, K., & Lamb, R. (1995). The in(a/tanβ) index: How to calculate it and howto use it within the topmodel framework. Hydrological Processes, 9, 161–182. doi: 10.1002/hyp.3360090204.CrossRefGoogle Scholar
  39. Rahman, H. A. (2014). Brief review an overview of environmental disaster in Malaysia and Preparedness Strategies. Iranian Journal of Public Health [Internet], 43:17–24. Available from: http://ijph.tums.ac.ir
  40. Realino, V., Llanes, F., Resma, M. D., Obrique, J., Quina, C., Gacusan, R., et al. (2015). Debris flow numerical modelling using high resolution digital terrain models of Ilocos Sur, Philippines. Nationwide Oper Assess Hazards [Internet]. 4:1–7. Available from: http://blog.noah.dost.gov.ph/2015/07/21/debris-flow-numerical-modelling-using-high-resolution-digital-terrain-models-of-ilocos-sur-philippines/
  41. Rickenmann, D. (2016). Debris-flow hazard assessment and methods applied in engineering practice. International Journal of Erosion Control Engineering, 9, 80–90.Google Scholar
  42. Rickenmann, D., & Zimmermann, M. (1993). The 1987 debris flows inSwitzerland: documentation and analysis. Geomorphology, 8, 175–189. doi: 10.1016/0169-555X(93)90036-2.CrossRefGoogle Scholar
  43. Takahashi, T. (1981). Debris flow. Annual Review of Fluid Mechanics, 13(1), 57–77.CrossRefGoogle Scholar
  44. Takahashi, T. (2007). Estimation of potential debris flows and their hazardous zones: Soft countermeasures for a disaster. Journal of Natural Disaster Science, 3, 57–89.Google Scholar
  45. U.S Geological Survey. (2004). Landslide types and processes. Online http://pubs.usgs.gov/fs/2004/3072/fs-2004-3072.html
  46. Varnes DJ. 1978. Slope movement types and processes. In: Schuster RL, Krizek RJ, editors. Landslides analysis and control, transportation. Special Report 176. Washington (DC): Transport Research Board, National Research Council; p. 1133.Google Scholar
  47. Youssef, A. M., & Pradhan, B. (2013). Debris flow impact assessment caused by 14 April 2012 rainfall along the Al-Hada Highway. Saudi Soc Geosci: Kingdom of Saudi Arabia using high-resolution satellite imagery.Google Scholar
  48. Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the Jelapang Corridor of the North-South Expressway in Malaysia using high resolution airborne LiDAR data. Arab J Geosci., 8, 9789–9800.CrossRefGoogle Scholar
  49. Zhang, W., & Montgomery, D. (1994). Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Re- sour. Res., 30, 1019–1028. doi: 10.1029/93WR03553 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations