Advertisement

Integration of LiDAR and QuickBird Data for Automatic Landslide Detection Using Object-Based Analysis and Random Forests

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Seeni
  • Haleh Nampak
Chapter

Abstract

Landslide inventories are indispensable in producing landslide susceptibility, hazard, and risk maps. Landslide inventory maps are produced by detecting landslide locations or scarps.

Keywords

Taguchi Method LiDAR Data Landslide Inventory Segmentation Parameter QuickBird Imagery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Arenas-García, J., & Camps-Valls, G. (2008). Efficient kernel orthonormalized PLS for remote sensing applications. IEEE Transactions on Geoscience and Remote Sensing, 46(10), 2872–2881.CrossRefGoogle Scholar
  2. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.CrossRefGoogle Scholar
  3. Borghuis, AM., Chang, K., Lee, HY. (2007). Comparision between automated and manual mapping of typhoon-trigerred landslides from SPOT-5 imagery. International Journal of Remote Sensing, 7(8), 1843–1856.Google Scholar
  4. Brardinoni, F., Slaymaker, O., & Hassan, M. A. (2003). Landslide inventory in a rugged forested watershed: A comparison between air-photo and field survey data. Geomorphology, 54(3), 179–196.CrossRefGoogle Scholar
  5. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.CrossRefGoogle Scholar
  6. Calabro, M., Schmidt, D., & Roering, J. (2010). An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry. Journal of Geophysical Research: Earth Surface, 115(F2).Google Scholar
  7. Castillejo-González, I. L., López-Granados, F., García-Ferrer, A., Peña-Barragán, J. M., Jurado-Expósito, M., de la Orden, M. S., et al. (2009). Object-and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery. Computers and Electronics in Agriculture, 68(2), 207–215.CrossRefGoogle Scholar
  8. Chen, Y., Su, W., Li, J., & Sun, Z. (2009). Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas. Advances in Space Research, 43(7), 1101–1110.CrossRefGoogle Scholar
  9. Cheng, K., Wei, C., & Chang, S. (2004). Locating landslides using multi-temporal satellite images. Advances in Space Research, 33(3), 296–301.CrossRefGoogle Scholar
  10. Derron, M.-H., & Jaboyedoff, M. (2010). Preface “LIDAR and DEM techniques for landslides monitoring and characterization”. Natural Hazards and Earth System Science, 10(9), 1877–1879.CrossRefGoogle Scholar
  11. Díaz-Uriarte, R., & De Andres, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7(1), 1.CrossRefGoogle Scholar
  12. Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyersons, J., et al. (2007). Use of LIDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32(5), 754–769.CrossRefGoogle Scholar
  13. Foody, G. M., & Mathur, A. (2004). Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sensing of Environment, 93(1), 107–117.CrossRefGoogle Scholar
  14. Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., & Reichenbach, P. (2008). Comparing landslide inventory maps. Geomorphology, 94(3), 268–289.CrossRefGoogle Scholar
  15. Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2015). VSURF: An R package for variable selection using random forests. The R Journal, 7(2), 19–33.Google Scholar
  16. Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300.CrossRefGoogle Scholar
  17. Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1), 42–66.CrossRefGoogle Scholar
  18. Laliberte, A., Rango, A., Herrick, J., Fredrickson, E. L., & Burkett, L. (2007). An object-based image analysis approach for determining fractional cover of senescent and green vegetation with digital plot photography. Journal of Arid Environments, 69(1), 1–14.CrossRefGoogle Scholar
  19. Möller, M., Lymburner, L., & Volk, M. (2007). The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Geoinformation, 9(3), 311–321.CrossRefGoogle Scholar
  20. Moosavi, V., Talebi, A., & Shirmohammadi, B. (2014). Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology, 204, 646–656.CrossRefGoogle Scholar
  21. Murillo-García, F. G., Alcántara-Ayala, I., Ardizzone, F., Cardinali, M., Fiourucci, F., & Guzzetti, F. (2015). Satellite stereoscopic pair images of very high resolution: A step forward for the development of landslide inventories. Landslides, 12(2), 277–291.CrossRefGoogle Scholar
  22. Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11–20.CrossRefGoogle Scholar
  23. Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222.CrossRefGoogle Scholar
  24. Rau, J.-Y., Jhan, J.-P., & Rau, R.-J. (2014). Semiautomatic object-oriented landslide recognition scheme from multisensor optical imagery and DEM. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 1336–1349.CrossRefGoogle Scholar
  25. Saeidi, V., Pradhan, B., Idrees, M. O., & Latif, Z. A. (2014). Fusion of airborne LiDAR with multispectral SPOT 5 image for enhancement of feature extraction using Dempster-Shafer theory. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6017–6025.CrossRefGoogle Scholar
  26. Singh, L. P., Van Westen, C., Ray, P. C., & Pasquali, P. (2005). Accuracy assessment of InSAR derived input maps for landslide susceptibility analysis: A case study from the Swiss Alps. Landslides, 2(3), 221–228.CrossRefGoogle Scholar
  27. Slatton, K. C., Carter, W. E., Shrestha, R. L., & Dietrich, W. (2007). Airborne laser swath mapping: Achieving the resolution and accuracy required for geosurficial research. Geophysical Research Letters, 34(23).Google Scholar
  28. Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1), 1.CrossRefGoogle Scholar
  29. Van Coillie, F., Lievens, H., Joos, I., Pizurica, A., Verbeke, L., De Wulf, R., et al. (2011). Training neural networks on artificially generated data: A novel approach to SAR speckle removal. International Journal of Remote Sensing, 32(12), 3405–3425.CrossRefGoogle Scholar
  30. Van Coillie, F. M., Verbeke, L. P., & De Wulf, R. R. (2007). Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium. Remote Sensing of Environment, 110(4), 476–487.CrossRefGoogle Scholar
  31. Van Den Eeckhaut, M., & Hervás, J. (2012). State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology, 139, 545–558.CrossRefGoogle Scholar
  32. Wang, F., Hasbani, J.-G., Wang, X., & Marceau, D. J. (2011). Identifying dominant factors for the calibration of a land-use cellular automata model using rough set theory. Computers, Environment and Urban Systems, 35(2), 116–125.CrossRefGoogle Scholar
  33. Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the Jelapang Corridor of the North-South Expressway in Malaysia using high resolution airborne LiDAR data. Arabian Journal of Geosciences, 8(11), 9789–9800.CrossRefGoogle Scholar
  34. Zhang, L., & Gruen, A. (2006). Multi-image matching for DSM generation from IKONOS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3), 195–211.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Biswajeet Pradhan
    • 1
    Email author
  • Maher Ibrahim Seeni
    • 1
  • Haleh Nampak
    • 1
  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations