Skip to main content

Integration of LiDAR and QuickBird Data for Automatic Landslide Detection Using Object-Based Analysis and Random Forests

  • Chapter
  • First Online:
Laser Scanning Applications in Landslide Assessment

Abstract

Landslide inventories are indispensable in producing landslide susceptibility, hazard, and risk maps. Landslide inventory maps are produced by detecting landslide locations or scarps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arenas-García, J., & Camps-Valls, G. (2008). Efficient kernel orthonormalized PLS for remote sensing applications. IEEE Transactions on Geoscience and Remote Sensing, 46(10), 2872–2881.

    Article  Google Scholar 

  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.

    Article  Google Scholar 

  • Borghuis, AM., Chang, K., Lee, HY. (2007). Comparision between automated and manual mapping of typhoon-trigerred landslides from SPOT-5 imagery. International Journal of Remote Sensing, 7(8), 1843–1856.

    Google Scholar 

  • Brardinoni, F., Slaymaker, O., & Hassan, M. A. (2003). Landslide inventory in a rugged forested watershed: A comparison between air-photo and field survey data. Geomorphology, 54(3), 179–196.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Calabro, M., Schmidt, D., & Roering, J. (2010). An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry. Journal of Geophysical Research: Earth Surface, 115(F2).

    Google Scholar 

  • Castillejo-González, I. L., López-Granados, F., García-Ferrer, A., Peña-Barragán, J. M., Jurado-Expósito, M., de la Orden, M. S., et al. (2009). Object-and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery. Computers and Electronics in Agriculture, 68(2), 207–215.

    Article  Google Scholar 

  • Chen, Y., Su, W., Li, J., & Sun, Z. (2009). Hierarchical object oriented classification using very high resolution imagery and LIDAR data over urban areas. Advances in Space Research, 43(7), 1101–1110.

    Article  Google Scholar 

  • Cheng, K., Wei, C., & Chang, S. (2004). Locating landslides using multi-temporal satellite images. Advances in Space Research, 33(3), 296–301.

    Article  Google Scholar 

  • Derron, M.-H., & Jaboyedoff, M. (2010). Preface “LIDAR and DEM techniques for landslides monitoring and characterization”. Natural Hazards and Earth System Science, 10(9), 1877–1879.

    Article  Google Scholar 

  • Díaz-Uriarte, R., & De Andres, S. A. (2006). Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7(1), 1.

    Article  Google Scholar 

  • Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyersons, J., et al. (2007). Use of LIDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32(5), 754–769.

    Article  Google Scholar 

  • Foody, G. M., & Mathur, A. (2004). Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sensing of Environment, 93(1), 107–117.

    Article  Google Scholar 

  • Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., & Reichenbach, P. (2008). Comparing landslide inventory maps. Geomorphology, 94(3), 268–289.

    Article  Google Scholar 

  • Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2015). VSURF: An R package for variable selection using random forests. The R Journal, 7(2), 19–33.

    Google Scholar 

  • Gislason, P. O., Benediktsson, J. A., & Sveinsson, J. R. (2006). Random forests for land cover classification. Pattern Recognition Letters, 27(4), 294–300.

    Article  Google Scholar 

  • Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1), 42–66.

    Article  Google Scholar 

  • Laliberte, A., Rango, A., Herrick, J., Fredrickson, E. L., & Burkett, L. (2007). An object-based image analysis approach for determining fractional cover of senescent and green vegetation with digital plot photography. Journal of Arid Environments, 69(1), 1–14.

    Article  Google Scholar 

  • Möller, M., Lymburner, L., & Volk, M. (2007). The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Geoinformation, 9(3), 311–321.

    Article  Google Scholar 

  • Moosavi, V., Talebi, A., & Shirmohammadi, B. (2014). Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology, 204, 646–656.

    Article  Google Scholar 

  • Murillo-García, F. G., Alcántara-Ayala, I., Ardizzone, F., Cardinali, M., Fiourucci, F., & Guzzetti, F. (2015). Satellite stereoscopic pair images of very high resolution: A step forward for the development of landslide inventories. Landslides, 12(2), 277–291.

    Article  Google Scholar 

  • Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11–20.

    Article  Google Scholar 

  • Pal, M. (2005). Random forest classifier for remote sensing classification. International Journal of Remote Sensing, 26(1), 217–222.

    Article  Google Scholar 

  • Rau, J.-Y., Jhan, J.-P., & Rau, R.-J. (2014). Semiautomatic object-oriented landslide recognition scheme from multisensor optical imagery and DEM. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 1336–1349.

    Article  Google Scholar 

  • Saeidi, V., Pradhan, B., Idrees, M. O., & Latif, Z. A. (2014). Fusion of airborne LiDAR with multispectral SPOT 5 image for enhancement of feature extraction using Dempster-Shafer theory. IEEE Transactions on Geoscience and Remote Sensing, 52(10), 6017–6025.

    Article  Google Scholar 

  • Singh, L. P., Van Westen, C., Ray, P. C., & Pasquali, P. (2005). Accuracy assessment of InSAR derived input maps for landslide susceptibility analysis: A case study from the Swiss Alps. Landslides, 2(3), 221–228.

    Article  Google Scholar 

  • Slatton, K. C., Carter, W. E., Shrestha, R. L., & Dietrich, W. (2007). Airborne laser swath mapping: Achieving the resolution and accuracy required for geosurficial research. Geophysical Research Letters, 34(23).

    Google Scholar 

  • Strobl, C., Boulesteix, A.-L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1), 1.

    Article  Google Scholar 

  • Van Coillie, F., Lievens, H., Joos, I., Pizurica, A., Verbeke, L., De Wulf, R., et al. (2011). Training neural networks on artificially generated data: A novel approach to SAR speckle removal. International Journal of Remote Sensing, 32(12), 3405–3425.

    Article  Google Scholar 

  • Van Coillie, F. M., Verbeke, L. P., & De Wulf, R. R. (2007). Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium. Remote Sensing of Environment, 110(4), 476–487.

    Article  Google Scholar 

  • Van Den Eeckhaut, M., & Hervás, J. (2012). State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology, 139, 545–558.

    Article  Google Scholar 

  • Wang, F., Hasbani, J.-G., Wang, X., & Marceau, D. J. (2011). Identifying dominant factors for the calibration of a land-use cellular automata model using rough set theory. Computers, Environment and Urban Systems, 35(2), 116–125.

    Article  CAS  Google Scholar 

  • Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the Jelapang Corridor of the North-South Expressway in Malaysia using high resolution airborne LiDAR data. Arabian Journal of Geosciences, 8(11), 9789–9800.

    Article  Google Scholar 

  • Zhang, L., & Gruen, A. (2006). Multi-image matching for DSM generation from IKONOS imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 60(3), 195–211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pradhan, B., Seeni, M.I., Nampak, H. (2017). Integration of LiDAR and QuickBird Data for Automatic Landslide Detection Using Object-Based Analysis and Random Forests. In: Pradhan, B. (eds) Laser Scanning Applications in Landslide Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-55342-9_4

Download citation

Publish with us

Policies and ethics