Advertisement

Optimized Rule Sets for Automatic Landslide Characteristic Detection in a Highly Vegetated Forests

  • Biswajeet PradhanEmail author
  • Mustafa Ridha Mezaal
Chapter

Abstract

The rapid expansion of cities and the continuously increasing population in urban areas lead to the establishment of settlements in mountainous areas.

Keywords

Digital Elevation Model LiDAR Data Shallow Landslide Landslide Inventory Decision Tree Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agliardi, F., Crosta, G. B., Zanchi, A., & Ravazzi, C. (2009). Onset and timing of deep-seated gravitational slope deformations in the eastern Alps, Italy. Geomorphology, 103(1), 113–129.CrossRefGoogle Scholar
  2. Anders, N. S., Seijmonsbergen, A. C., & Bouten, W. (2011). Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping. Remote Sensing of Environment, 115(12), 2976–2985.CrossRefGoogle Scholar
  3. Bai, S., Wang, J., Zhang, Z., & Cheng, C. (2012). Combined landslide susceptibility mapping after Wenchuan earthquake at the Zhouqu segment in the Bailongjiang Basin, China. Catena, 99, 18–25.CrossRefGoogle Scholar
  4. Barlow, J., Martin, Y., & Franklin, S. (2003). Detecting translational landslide scars using segmentation of Landsat ETM + and DEM data in the northern Cascade Mountains, British Columbia. Canadian Journal of Remote Sensing, 29(4), 510–517.CrossRefGoogle Scholar
  5. Belgiu, M., & Drǎguţ, L. (2014). Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 96, 67–75.CrossRefGoogle Scholar
  6. Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.CrossRefGoogle Scholar
  7. Borghuis, A., Chang, K., & Lee, H. (2007). Comparison between automated and manual mapping of typhoon-triggered landslides from SPOT-5 imagery. International Journal of Remote Sensing, 28(8), 1843–1856.CrossRefGoogle Scholar
  8. Brunetti, M., Guzzetti, F., & Rossi, M. (2009). Probability distributions of landslide volumes. Nonlinear Processes in Geophysics, 16(2), 179–188.CrossRefGoogle Scholar
  9. Bugnion, L., Volkwein, A., & Denk, M. (2009). Artificial full scale shallow landslides. Paper presented at the EGU General Assembly Conference Abstracts.Google Scholar
  10. Chang, K.-T., Liu, J.-K., & Wang, C.-I. (2012). An object-oriented analysis for characterizing the rainfall-induced shallow landslide. Journal of Marine Science and Technology, 20(6), 647–656.Google Scholar
  11. Chen, R.-F., Lin, C.-W., Chen, Y.-H., He, T.-C., & Fei, L.-Y. (2015). Detecting and characterizing active thrust fault and deep-seated landslides in dense forest areas of Southern Taiwan Using Airborne LiDAR DEM. Remote Sensing, 7(11), 15443–15466.CrossRefGoogle Scholar
  12. Chen, W., Li, X., Wang, Y., Chen, G., & Liu, S. (2014). Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China. Remote Sensing of Environment, 152, 291–301.CrossRefGoogle Scholar
  13. Cruden, D. M., & Varnes, D. J. (1996). Landslides: investigation and mitigation. Chapter 3-Landslide types and processes. Transportation research board special report (247).Google Scholar
  14. Daniel, S. (2014). Predictive modeling of trust to Social Media content.Google Scholar
  15. Danneels, G., Pirard, E., & Havenith, H.-B. (2007). Automatic landslide detection from remote sensing images using supervised classification methods. Paper presented at the 2007 IEEE International Geoscience and Remote Sensing Symposium.Google Scholar
  16. Darwish, A., Leukert, K., & Reinhardt, W. (2003). Image segmentation for the purpose of object-based classification. Paper presented at the International Geoscience and Remote Sensing Symposium.Google Scholar
  17. Delgado, J., Vicente, F., García-Tortosa, F., Alfaro, P., Estévez, A., Lopez-Sanchez, J., et al. (2011). A deep seated compound rotational rock slide and rock spread in SE Spain: Structural control and DInSAR monitoring. Geomorphology, 129(3), 252–262.CrossRefGoogle Scholar
  18. Dey, V., Zhang, Y., & Zhong, M. (2010). A review on image segmentation techniques with remote sensing perspective: na.Google Scholar
  19. Đomlija, P., Bernat, S., Mihalić, S. A., & Benac, Č. (2014). Landslide inventory in the area of Dubračina River Basin (Croatia) Landslide science for a safer geoenvironment (pp. 837–842). Berlin: Springer.Google Scholar
  20. Dou, J., Chang, K.-T., Chen, S., Yunus, A. P., Liu, J.-K., Xia, H., et al. (2015a). Automatic case-based reasoning approach for landslide detection: Integration of object-oriented image analysis and a genetic algorithm. Remote Sensing, 7(4), 4318–4342.CrossRefGoogle Scholar
  21. Dou, J., Paudel, U., Oguchi, T., Uchiyama, S., & Hayakavva, Y. S. (2015). Shallow and deep-seated landslide differentiation using support vector machines: A case study of the Chuetsu Area, Japan. Terrestrial, Atmospheric & Oceanic Sciences, 26(2).Google Scholar
  22. Drǎguţ, L., Tiede, D., & Levick, S. R. (2010). ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24(6), 859–871.CrossRefGoogle Scholar
  23. Gao, J., & Maro, J. (2010). Topographic controls on evolution of shallow landslides in pastoral Wairarapa, New Zealand, 1979–2003. Geomorphology, 114(3), 373–381.CrossRefGoogle Scholar
  24. Goudie, A. (2004). Encyclopedia of geomorphology (Vol. 2). UK: Psychology Press.Google Scholar
  25. Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K.-T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1), 42–66.CrossRefGoogle Scholar
  26. Heleno, S., Matias, M., Pina, P., & Sousa, A. (2015). Automated object-based classification of rain-induced landslides with VHR multispectral images in Madeira Island. Natural Hazards & Earth System Sciences Discussions, 3(9).Google Scholar
  27. Hervás, J., & Rosin, P. L. (1996). Landslide mapping by textural analysis of ATM data. Paper presented at the Proceedings of the Thematic Conference on Geologic Remote Sensing.Google Scholar
  28. Hong, Y., He, X., Cerato, A., Zhang, K., Hong, Z., & Liao, Z. (2015). Predictability of a physically based model for rainfall-induced shallow landslides: Model development and case studies. In Modern technologies for landslide monitoring and prediction (pp. 165–178). New York: Springer.Google Scholar
  29. Kasai, M., Ikeda, M., Asahina, T., & Fujisawa, K. (2009). LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology, 113(1), 57–69.CrossRefGoogle Scholar
  30. Kellerer-Pirklbauer, A., Proske, H., & Strasser, V. (2010). Paraglacial slope adjustment since the end of the Last Glacial Maximum and its long-lasting effects on secondary mass wasting processes: Hauser Kaibling, Austria. Geomorphology, 120(1), 65–76.CrossRefGoogle Scholar
  31. Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1), 273–324.CrossRefGoogle Scholar
  32. Korup, O. (2006). Effects of large deep‐seated landslides on hillslope morphology, western Southern Alps, New Zealand. Journal of Geophysical Research: Earth Surface, 111(F1).Google Scholar
  33. Kursa, M. B., & Rudnicki, W. R. (2010). Feature selection with the Boruta package: Journal.Google Scholar
  34. Li, M., Ma, L., Blaschke, T., Cheng, L., & Tiede, D. (2016). A systematic comparison of different object-based classification techniques using high spatial resolution imagery in agricultural environments. International Journal of Applied Earth Observation and Geoinformation, 49, 87–98.CrossRefGoogle Scholar
  35. Lin, C.-W., Tseng, C.-M., Tseng, Y.-H., Fei, L.-Y., Hsieh, Y.-C., & Tarolli, P. (2013). Recognition of large scale deep-seated landslides in forest areas of Taiwan using high resolution topography. Journal of Asian Earth Sciences, 62, 389–400.CrossRefGoogle Scholar
  36. Ma, H.-R., Cheng, X., Chen, L., Zhang, H., & Xiong, H. (2016). Automatic identification of shallow landslides based on Worldview2 remote sensing images. Journal of Applied Remote Sensing, 10(1), 016008.CrossRefGoogle Scholar
  37. Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687–711.CrossRefGoogle Scholar
  38. Martha, T. R., Kerle, N., Jetten, V., van Westen, C. J., & Kumar, K. V. (2010). Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology, 116(1), 24–36.CrossRefGoogle Scholar
  39. Martha, T. R., Kerle, N., van Westen, C. J., Jetten, V., & Kumar, K. V. (2011). Segment optimization and data-driven thresholding for knowledge-based landslide detection by object-based image analysis. IEEE Transactions on Geoscience and Remote Sensing, 49(12), 4928–4943.CrossRefGoogle Scholar
  40. McKean, J., & Roering, J. (2004). Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57(3), 331–351.CrossRefGoogle Scholar
  41. Moine, M., Puissant, A., & Malet, J.-P. (2009). Detection of landslides from aerial and satellite images with a semi-automatic method. Application to the Barcelonnette basin (Alpes-de-Hautes-Provence, France): Paper presented at the Landslide processes-from geomorphologic mapping to dynamic modelling.Google Scholar
  42. Möller, M., Lymburner, L., & Volk, M. (2007). The comparison index: A tool for assessing the accuracy of image segmentation. International Journal of Applied Earth Observation and Geoinformation, 9(3), 311–321.CrossRefGoogle Scholar
  43. Mondini, A., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., & Ardizzone, F. (2011). Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images. Remote Sensing of Environment, 115(7), 1743–1757.CrossRefGoogle Scholar
  44. Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26(9), 1277–1294.CrossRefGoogle Scholar
  45. Pontius, R. G., Jr., & Millones, M. (2011). Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), 4407–4429.CrossRefGoogle Scholar
  46. Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1610–1622.CrossRefGoogle Scholar
  47. Radoux, J., & Bogaert, P. (2014). Accounting for the area of polygon sampling units for the prediction of primary accuracy assessment indices. Remote Sensing of Environment, 142, 9–19.CrossRefGoogle Scholar
  48. Rau, J.-Y., Chang, K.-T., Shao, Y.-C., & Lau, C.-C. (2012). Semi-automatic shallow landslide detection by the integration of airborne imagery and laser scanning data. Natural Hazards, 61(2), 469–480.CrossRefGoogle Scholar
  49. Rau, J.-Y., Jhan, J.-P., & Rau, R.-J. (2014). Semiautomatic object-oriented landslide recognition scheme from multisensor optical imagery and DEM. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 1336–1349.CrossRefGoogle Scholar
  50. Segoni, S., Leoni, L., Benedetti, A., Catani, F., Righini, G., Falorni, G., et al. (2009). Towards a definition of a real-time forecasting network for rainfall induced shallow landslides. Natural Hazards and Earth System Sciences, 9(6), 2119–2133.CrossRefGoogle Scholar
  51. Stumpf, A., & Kerle, N. (2011). Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment, 115(10), 2564–2577.CrossRefGoogle Scholar
  52. Stumpf, A., Lachiche, N., Malet, J.-P., Kerle, N., & Puissant, A. (2014). Active learning in the spatial domain for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 52(5), 2492–2507.CrossRefGoogle Scholar
  53. Tarolli, P. (2014). High-resolution topography for understanding Earth surface processes: Opportunities and challenges. Geomorphology, 216, 295–312.CrossRefGoogle Scholar
  54. Tehrany, M. S., Pradhan, B., & Jebuv, M. N. (2014). A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using SPOT 5 imagery. Geocarto International, 29(4), 351–369.CrossRefGoogle Scholar
  55. Tian, J., & Chen, D. M. (2007). Optimization in multi-scale segmentation of high-resolution satellite images for artificial feature recognition. International Journal of Remote Sensing, 28(20), 4625–4644.CrossRefGoogle Scholar
  56. van Asselen, S., & Seijmonsbergen, A. (2006). Expert-driven semi-automated geomorphological mapping for a mountainous area using a laser DTM. Geomorphology, 78(3), 309–320.CrossRefGoogle Scholar
  57. Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3), 112–131.CrossRefGoogle Scholar
  58. Vennari, C., Gariano, S., Antronico, L., Brunetti, M., Iovine, G., Peruccacci, S., et al. (2014). Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Natural Hazards and Earth System Sciences, 14(2), 317–330.CrossRefGoogle Scholar
  59. Vohora, V., & Donoghue, S. (2004). Application of remote sensing data to landslide mapping in Hong Kong. Remote Sensing and Spatial Information Sciences: International Archives of Photogrammetry.Google Scholar
  60. Wiegand, C., Rutzinger, M., Heinrich, K., & Geitner, C. (2013). Automated extraction of shallow erosion areas based on multi-temporal ortho-imagery. Remote Sensing, 5(5), 2292–2307.CrossRefGoogle Scholar
  61. Yu, T.-T., Wang, T.-S., & Cheng, Y.-S. (2015). Analysis of factors triggering shallow failure and deep-seated landslides induced by single rainfall events. Journal of Disaster Research, 10(5), 966–972.CrossRefGoogle Scholar
  62. Zêzere, J. L., Trigo, R. M., & Trigo, I. F. (2005). Shallow and deep landslides induced by rainfall in the Lisbon region (Portugal): Assessment of relationships with the North Atlantic Oscillation. Natural Hazards and Earth System Science, 5(3), 331–344.CrossRefGoogle Scholar
  63. Zhang, Y., Maxwell, T., Tong, H., & Dey, V. (2010). Development of a supervised software tool for automated determination of optimal segmentation parameters for ecognition: na.Google Scholar
  64. Zizioli, D., Meisina, C., Bordoni, M., & Zucca, F. (2014). Rainfall-triggered shallow landslides mapping through Pleiades images In Landslide science for a safer geoenvironment (pp. 325–329). New York: Springer.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations