Skip to main content

Application of LiDAR in Rockfall Hazard Assessment in Tropical Region

  • Chapter
  • First Online:
Laser Scanning Applications in Landslide Assessment

Abstract

Rockfall is one of the catastrophes which threaten the human’s life and properties in mountainous and hilly regions such as Malaysia with steep and high-elevation topography. Prediction and mitigation of such phenomenon can be carried out via the identification of rockfall source areas (seeder points) and modelling of rockfall trajectories and their characteristics. Therefore, a proper rockfall analysis method is required in order to map and thus to understand the characteristics of rockfall catastrophe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, M., Umrao, R., Ansari, M., Singh, R., & Singh, T. (2013). Assessment of rockfall hazard along the road cut slopes of state highway-72, Maharashtra, India. Geomaterials, 3(1), 15–23.

    Article  Google Scholar 

  • Akin, M., Topal, T., & Akin, M. K. (2013). Evaluation of the rockfall potential of Kastamonu Castle Using 3-D analysis. In Landslide science and practice (pp. 335–340). Berlin: Springer.

    Google Scholar 

  • Ansari, M., Ahmad, M., & Singh, T. (2014). Rockfall hazard analysis of Ellora Cave, Aurangabad, Maharashtra, India. International Journal of Science and Research (IJSR), 3(5), 427–431.

    Google Scholar 

  • Assali, P., Grussenmeyer, P., Villemin, T., Pollet, N., & Viguier, F. (2014). Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection. Journal of Structural Geology, 66, 102–114.

    Article  Google Scholar 

  • Asteriou, P., Saroglou, H., & Tsiambaos, G. (2012). Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis. International Journal of Rock Mechanics and Mining Sciences, 54, 103–113.

    Article  Google Scholar 

  • Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1), 15–31.

    Article  Google Scholar 

  • Azzoni, A., La Barbera, G., & Zaninetti, A. (1995). Analysis and prediction of rockfalls using a mathematical model. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 709.

    Google Scholar 

  • Chai, B., Tang, Z., Zhang, A., Du, J., Su, H., & Yi, H. (2015). An uncertainty method for probabilistic analysis of buildings impacted by rockfall in a Limestone Quarry in Fengshan, Southwestern China. Rock Mechanics and Rock Engineering, 48(5), 1981–1996.

    Article  Google Scholar 

  • Chen, G., Zheng, L., Zhang, Y., & Wu, J. (2013). Numerical simulation in rockfall analysis: a close comparison of 2-D and 3-D DDA. Rock Mechanics and Rock Engineering, 46(3), 527–541.

    Article  Google Scholar 

  • Evans, I. S. (1977). The selection of class intervals. Transactions of the Institute of British Geographers, 2(1), 98–124.

    Article  Google Scholar 

  • Ferrari, F., Giani, G. P., & Apuani, T. (2013). Why can rockfall normal restitution coefficient be higher than one? Rendiconti Online SocietĂ  Geologica ItalianaSocietĂ  Geologica Italiana, 122.

    Google Scholar 

  • Heckmann, T., & Schwanghart, W. (2013). Geomorphic coupling and sediment connectivity in an alpine catchment—Exploring sediment cascades using graph theory. Geomorphology, 182, 89–103.

    Article  Google Scholar 

  • Jaboyedoff, M., Dudt, J., & Labiouse, V. (2005). An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree. Natural Hazards and Earth System Science, 5(5), 621–632.

    Article  Google Scholar 

  • Kenner, R., BĂĽhler, Y., Delaloye, R., Ginzler, C., & Phillips, M. (2014). Monitoring of high alpine mass movements combining laser scanning with digital airborne photogrammetry. Geomorphology, 206, 492–504.

    Article  Google Scholar 

  • Keskin, Ä°. (2013). Evaluation of rock falls in an urban area: The case of BoÄźaziçi (Erzincan/Turkey). Environmental Earth Sciences, 70(4), 1619–1628.

    Article  Google Scholar 

  • Ku, C. (2012). Assessing rockfall hazards using a three-dimensional numerical model based on high resolution DEM. In The Twenty-second International Offshore and Polar Engineering Conference (p. 790). International Society of Offshore and Polar Engineers.

    Google Scholar 

  • Lan, H., Derek Martin, C., & Lim, C. (2007). RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Computers & Geosciences, 33(2), 262–279.

    Article  Google Scholar 

  • Lan, H., Martin, C. D., Zhou, C., & Lim, C. H. (2010). Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology, 118(1), 213–223.

    Article  Google Scholar 

  • Leine, R., Schweizer, A., Christen, M., Glover, J., Bartelt, P., & Gerber, W. (2013). Simulation of rockfall trajectories with consideration of rock shape. Multibody System Dynamics, 32(2), 1–31.

    Google Scholar 

  • Loye, A., Jaboyedoff, M., & Pedrazzini, A. (2009). Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Natural Hazards and Earth System Science, 9(5), 1643–1653.

    Article  Google Scholar 

  • Ma, G., Matsuyama, H., Nishiyama, S., & Ohnishi, Y. (2011). Practical studies on rockfall simulation by DDA. Journal of Rock Mechanics and Geotechnical Engineering, 3(1), 57–63.

    Article  Google Scholar 

  • Macciotta, R., Martin, C. D., & Cruden, D. M. (2014). Probabilistic estimation of rockfall height and kinetic energy based on a three-dimensional trajectory model and Monte Carlo simulation. Landslides, 12(4), 1–16.

    Google Scholar 

  • MacEachren, A. M. (1994). Some truth with maps: A primer on symbolization and design. American Association of Geographers.

    Google Scholar 

  • Pradhan, B., Abokharima, M. H., Jebur, M. N., & Tehrany, M. S. (2014). Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural Hazards, 73(2), 1019–1042.

    Article  Google Scholar 

  • Rammer, W., Brauner, M., Dorren, L., Berger, F., & Lexer, M. (2010). Evaluation of a 3-D rockfall module within a forest patch model. Natural Hazards and Earth System Sciences, 10(4), 699–711.

    Article  Google Scholar 

  • Saaty, T. (1980). The analytic hierarchy process. New York: McGraw-Hill.

    Google Scholar 

  • Sabatakakis, N., Depountis, N., & Vagenas, N. (2015). Evaluation of rockfall restitution coefficients. Engineering Geology for Society and Territory, 2, 2023–2026.

    Google Scholar 

  • Samodra, G., Chen, G., Sartohadi, J., Hadmoko, D., & Kasama, K. (2014). Automated landform classification in a rockfall-prone area, Gunung Kelir, Java. Earth Surface Dynamics, 2(1), 339–348.

    Article  Google Scholar 

  • Singh, P., Wasnik, A., Kainthola, A., Sazid, M., & Singh, T. (2013). The stability of road cut cliff face along SH-121: A case study. Natural Hazards, 68(2), 497–507.

    Article  Google Scholar 

  • Siqiao, Y., Hongmei, T., Hongkai, C., & Hui, Z. (2010, August). Stability evaluation of rockfall based on AHP-Fuzzy method. In Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) (Vol. 3, pp. 1369-1373). IEEE.

    Google Scholar 

  • Stephenne, N., Frippiat, C., Veschkens, M., Salmon, M., & Pacyna, D. (2014). Use of a Lidar high resolution digital elevation model for risk stability analysis. EARSeL eProceedings, 13(S1), 24–29.

    Google Scholar 

  • Topal, T., Akin, M., & Ozden, U. A. (2007). Assessment of rockfall hazard around Afyon Castle, Turkey. Environmental Geology, 53(1), 191–200.

    Article  CAS  Google Scholar 

  • Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29.

    Article  Google Scholar 

  • Wang, X., Frattini, P., Crosta, G., Zhang, L., Agliardi, F., Lari, S., et al. (2014). Uncertainty assessment in quantitative rockfall risk assessment. Landslides, 11(4), 711–722.

    Article  Google Scholar 

  • Wyllie, D. C. (2014). Calibration of rock fall modeling parameters. International Journal of Rock Mechanics and Mining Sciences, 67, 170–180.

    Article  Google Scholar 

  • Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the Jelapang Corridor of the North-South Expressway in Malaysia using high resolution airborne LiDAR data. Arabian Journal of Geosciences, 8(11), 1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pradhan, B., Fanos, A.M. (2017). Application of LiDAR in Rockfall Hazard Assessment in Tropical Region. In: Pradhan, B. (eds) Laser Scanning Applications in Landslide Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-55342-9_16

Download citation

Publish with us

Policies and ethics