Application of LiDAR in Rockfall Hazard Assessment in Tropical Region

  • Biswajeet PradhanEmail author
  • Ali Mutar Fanos


Rockfall is one of the catastrophes which threaten the human’s life and properties in mountainous and hilly regions such as Malaysia with steep and high-elevation topography. Prediction and mitigation of such phenomenon can be carried out via the identification of rockfall source areas (seeder points) and modelling of rockfall trajectories and their characteristics. Therefore, a proper rockfall analysis method is required in order to map and thus to understand the characteristics of rockfall catastrophe.


Digital Elevation Model Analytic Hierarchy Process Friction Angle Seed Point Airborne Laser Scanner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahmad, M., Umrao, R., Ansari, M., Singh, R., & Singh, T. (2013). Assessment of rockfall hazard along the road cut slopes of state highway-72, Maharashtra, India. Geomaterials, 3(1), 15–23.CrossRefGoogle Scholar
  2. Akin, M., Topal, T., & Akin, M. K. (2013). Evaluation of the rockfall potential of Kastamonu Castle Using 3-D analysis. In Landslide science and practice (pp. 335–340). Berlin: Springer.Google Scholar
  3. Ansari, M., Ahmad, M., & Singh, T. (2014). Rockfall hazard analysis of Ellora Cave, Aurangabad, Maharashtra, India. International Journal of Science and Research (IJSR), 3(5), 427–431.Google Scholar
  4. Assali, P., Grussenmeyer, P., Villemin, T., Pollet, N., & Viguier, F. (2014). Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection. Journal of Structural Geology, 66, 102–114.CrossRefGoogle Scholar
  5. Asteriou, P., Saroglou, H., & Tsiambaos, G. (2012). Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis. International Journal of Rock Mechanics and Mining Sciences, 54, 103–113.CrossRefGoogle Scholar
  6. Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1), 15–31.CrossRefGoogle Scholar
  7. Azzoni, A., La Barbera, G., & Zaninetti, A. (1995). Analysis and prediction of rockfalls using a mathematical model. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 709.Google Scholar
  8. Chai, B., Tang, Z., Zhang, A., Du, J., Su, H., & Yi, H. (2015). An uncertainty method for probabilistic analysis of buildings impacted by rockfall in a Limestone Quarry in Fengshan, Southwestern China. Rock Mechanics and Rock Engineering, 48(5), 1981–1996.CrossRefGoogle Scholar
  9. Chen, G., Zheng, L., Zhang, Y., & Wu, J. (2013). Numerical simulation in rockfall analysis: a close comparison of 2-D and 3-D DDA. Rock Mechanics and Rock Engineering, 46(3), 527–541.CrossRefGoogle Scholar
  10. Evans, I. S. (1977). The selection of class intervals. Transactions of the Institute of British Geographers, 2(1), 98–124.CrossRefGoogle Scholar
  11. Ferrari, F., Giani, G. P., & Apuani, T. (2013). Why can rockfall normal restitution coefficient be higher than one? Rendiconti Online Società Geologica ItalianaSocietà Geologica Italiana, 122.Google Scholar
  12. Heckmann, T., & Schwanghart, W. (2013). Geomorphic coupling and sediment connectivity in an alpine catchment—Exploring sediment cascades using graph theory. Geomorphology, 182, 89–103.CrossRefGoogle Scholar
  13. Jaboyedoff, M., Dudt, J., & Labiouse, V. (2005). An attempt to refine rockfall hazard zoning based on the kinetic energy, frequency and fragmentation degree. Natural Hazards and Earth System Science, 5(5), 621–632.CrossRefGoogle Scholar
  14. Kenner, R., Bühler, Y., Delaloye, R., Ginzler, C., & Phillips, M. (2014). Monitoring of high alpine mass movements combining laser scanning with digital airborne photogrammetry. Geomorphology, 206, 492–504.CrossRefGoogle Scholar
  15. Keskin, İ. (2013). Evaluation of rock falls in an urban area: The case of Boğaziçi (Erzincan/Turkey). Environmental Earth Sciences, 70(4), 1619–1628.CrossRefGoogle Scholar
  16. Ku, C. (2012). Assessing rockfall hazards using a three-dimensional numerical model based on high resolution DEM. In The Twenty-second International Offshore and Polar Engineering Conference (p. 790). International Society of Offshore and Polar Engineers.Google Scholar
  17. Lan, H., Derek Martin, C., & Lim, C. (2007). RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Computers & Geosciences, 33(2), 262–279.CrossRefGoogle Scholar
  18. Lan, H., Martin, C. D., Zhou, C., & Lim, C. H. (2010). Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology, 118(1), 213–223.CrossRefGoogle Scholar
  19. Leine, R., Schweizer, A., Christen, M., Glover, J., Bartelt, P., & Gerber, W. (2013). Simulation of rockfall trajectories with consideration of rock shape. Multibody System Dynamics, 32(2), 1–31.Google Scholar
  20. Loye, A., Jaboyedoff, M., & Pedrazzini, A. (2009). Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Natural Hazards and Earth System Science, 9(5), 1643–1653.CrossRefGoogle Scholar
  21. Ma, G., Matsuyama, H., Nishiyama, S., & Ohnishi, Y. (2011). Practical studies on rockfall simulation by DDA. Journal of Rock Mechanics and Geotechnical Engineering, 3(1), 57–63.CrossRefGoogle Scholar
  22. Macciotta, R., Martin, C. D., & Cruden, D. M. (2014). Probabilistic estimation of rockfall height and kinetic energy based on a three-dimensional trajectory model and Monte Carlo simulation. Landslides, 12(4), 1–16.Google Scholar
  23. MacEachren, A. M. (1994). Some truth with maps: A primer on symbolization and design. American Association of Geographers.Google Scholar
  24. Pradhan, B., Abokharima, M. H., Jebur, M. N., & Tehrany, M. S. (2014). Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural Hazards, 73(2), 1019–1042.CrossRefGoogle Scholar
  25. Rammer, W., Brauner, M., Dorren, L., Berger, F., & Lexer, M. (2010). Evaluation of a 3-D rockfall module within a forest patch model. Natural Hazards and Earth System Sciences, 10(4), 699–711.CrossRefGoogle Scholar
  26. Saaty, T. (1980). The analytic hierarchy process. New York: McGraw-Hill.Google Scholar
  27. Sabatakakis, N., Depountis, N., & Vagenas, N. (2015). Evaluation of rockfall restitution coefficients. Engineering Geology for Society and Territory, 2, 2023–2026.Google Scholar
  28. Samodra, G., Chen, G., Sartohadi, J., Hadmoko, D., & Kasama, K. (2014). Automated landform classification in a rockfall-prone area, Gunung Kelir, Java. Earth Surface Dynamics, 2(1), 339–348.CrossRefGoogle Scholar
  29. Singh, P., Wasnik, A., Kainthola, A., Sazid, M., & Singh, T. (2013). The stability of road cut cliff face along SH-121: A case study. Natural Hazards, 68(2), 497–507.CrossRefGoogle Scholar
  30. Siqiao, Y., Hongmei, T., Hongkai, C., & Hui, Z. (2010, August). Stability evaluation of rockfall based on AHP-Fuzzy method. In Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) (Vol. 3, pp. 1369-1373). IEEE.Google Scholar
  31. Stephenne, N., Frippiat, C., Veschkens, M., Salmon, M., & Pacyna, D. (2014). Use of a Lidar high resolution digital elevation model for risk stability analysis. EARSeL eProceedings, 13(S1), 24–29.Google Scholar
  32. Topal, T., Akin, M., & Ozden, U. A. (2007). Assessment of rockfall hazard around Afyon Castle, Turkey. Environmental Geology, 53(1), 191–200.CrossRefGoogle Scholar
  33. Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29.CrossRefGoogle Scholar
  34. Wang, X., Frattini, P., Crosta, G., Zhang, L., Agliardi, F., Lari, S., et al. (2014). Uncertainty assessment in quantitative rockfall risk assessment. Landslides, 11(4), 711–722.CrossRefGoogle Scholar
  35. Wyllie, D. C. (2014). Calibration of rock fall modeling parameters. International Journal of Rock Mechanics and Mining Sciences, 67, 170–180.CrossRefGoogle Scholar
  36. Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the Jelapang Corridor of the North-South Expressway in Malaysia using high resolution airborne LiDAR data. Arabian Journal of Geosciences, 8(11), 1–12.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations