Rockfall Hazard Assessment: An Overview

  • Biswajeet PradhanEmail author
  • Ali Mutar Fanos


Rockfalls are landslides that exhibit mass movements and highly varied volume and that involve rock masses ranging from several cubic centimeters to thousands of cubic meters. Rockfalls happen when rock masses are detached from a cliff face and freely fall under the effect of gravity.


Global Navigation Satellite System Global Navigation Satellite System Geographical Information System Shuttle Radar Topographic Mission Terrestrial Laser Scanning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abellán, A., Calvet, J., Vilaplana, J. M., & Blanchard, J. (2010). Detection and spatial prediction of rockfalls by means of terrestrial laser scanner monitoring. Geomorphology, 119(3), 162–171.CrossRefGoogle Scholar
  2. Abellán, A., Jaboyedoff, M., Oppikofer, T., & Vilaplana, J. (2009). Detection of millimetric deformation using a terrestrial laser scanner: Experiment and application to a rockfall event. Natural Hazards and Earth System Science, 9(2), 365–372.CrossRefGoogle Scholar
  3. Abellán, A., Vilaplana, J., & Martínez, J. (2006). Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Engineering Geology, 88(3), 136–148.CrossRefGoogle Scholar
  4. Agliardi, F., & Crosta, G. (2003). High resolution three-dimensional numerical modelling of rockfalls. International Journal of Rock Mechanics and Mining Sciences, 40(4), 455–471.CrossRefGoogle Scholar
  5. Ahmad, M., Umrao, R., Ansari, M., Singh, R., & Singh, T. (2013). Assessment of rockfall hazard along the road cut slopes of state highway-72, Maharashtra, India. Geomaterials, 3(1), 15–23.CrossRefGoogle Scholar
  6. Allen, S., & Huggel, C. (2013). Extremely warm temperatures as a potential cause of recent high mountain rockfall. Global and Planetary Change, 107, 59–69.CrossRefGoogle Scholar
  7. Antoniou, A. A. (2013). GIS-based evaluation of rockfall risk along routes in Greece. Environmental Earth Sciences, 70(5), 2305–2318.CrossRefGoogle Scholar
  8. Antoniou, A. A., & Lekkas, E. (2010). Rockfall susceptibility map for Athinios port, Santorini island, Greece. Geomorphology, 118(1), 152–166.CrossRefGoogle Scholar
  9. Antoniou, A., Papadimitriou, A., & Tsiambaos, G. (2008). A geographical information system managing geotechnical data for Athens (Greece) and its use for automated seismic microzonation. Natural Hazards, 47(3), 369–395.CrossRefGoogle Scholar
  10. Arbanas, Ž., Grošić, M., Udovič, D., & Mihalić, S. (2012). Rockfall hazard analyses and rockfall protection along the Adriatic coast of Croatia. Journal of Civil Engineering and Architecture, 6(3), 344–355.Google Scholar
  11. Armesto, J., Ordóñez, C., Alejano, L., & Arias, P. (2009). Terrestrial laser scanning used to determine the geometry of a granite boulder for stability analysis purposes. Geomorphology, 106(3), 271–277.CrossRefGoogle Scholar
  12. Asteriou, P., Saroglou, H., & Tsiambaos, G. (2012). Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis. International Journal of Rock Mechanics and Mining Sciences, 54, 103–113.CrossRefGoogle Scholar
  13. Azzoni, A., La Barbera, G., & Zaninetti, A. (1995). Analysis and prediction of rockfalls using a mathematical model. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 709.Google Scholar
  14. Barbarella, M., Fiani, M., & Lugli, A. (2013). Application of LiDAR-derived DEM for detection of mass movements on a landslide. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1(3), 89–98.Google Scholar
  15. Basson, F. (2012). Rigid body dynamics for rock fall trajectory simulation. In 46th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.Google Scholar
  16. Bater, C. W., & Coops, N. C. (2009). Evaluating error associated with LiDAR-derived DEM interpolation. Computers & Geosciences, 35(2), 289–300.CrossRefGoogle Scholar
  17. Berry, P., Garlick, J., & Smith, R. (2007). Near-global validation of the SRTM DEM using satellite radar altimetry. Remote Sensing of Environment, 106(1), 17–27.CrossRefGoogle Scholar
  18. Blahut, J., Klimeš, J., & Vařilová, Z. (2013). Quantitative rockfall hazard and risk analysis in selected municipalities of the České Švýcarsko National Park, Northwestern Czechia. Geografie, 118(3), 205–220.Google Scholar
  19. Bornaz, L., Lingua, A., & Rinaudo, F. (2002). Engineering and environmental applications of laser scanner techniques. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/B), 40–43.Google Scholar
  20. Bozzolo, D., & Pamini, R. (1986). Simulation of rock falls down a valley side. Acta Mechanica, 63(1–4), 113–130.CrossRefGoogle Scholar
  21. Brideau, M., Yan, M., & Stead, D. (2009). The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology, 103(1), 30–49.CrossRefGoogle Scholar
  22. Buckley, S. J., Howell, J., Enge, H., & Kurz, T. (2008). Terrestrial laser scanning in geology: Data acquisition, processing and accuracy considerations. Journal of the Geological Society, 165(3), 625–638.CrossRefGoogle Scholar
  23. Bühler, Y., Glover, J., Christen, M., & Bartelt, P. (2014). Digital elevation models in numerical rockfall simulations. In EGU General Assembly Conference Abstracts (p. 2109).Google Scholar
  24. Burns, W. J., Coe, J. A., Kaya, B. S., & Ma, L. (2010). Analysis of elevation changes detected from multi-temporal LiDAR surveys in forested landslide terrain in western Oregon. Environmental and Engineering Geoscience, 16(4), 315–341.CrossRefGoogle Scholar
  25. Carrara, A., Bitelli, G., & Carla, R. (1997). Comparison of techniques for generating digital terrain models from contour lines. International Journal of Geographical Information Science, 11(5), 451–473.CrossRefGoogle Scholar
  26. Chai, S., Yacoub, T., Charbonneau, K., & Curran, J. (2013). The effect of rigid body impact mechanics on tangential coefficient of restitution. Geo Montreal.Google Scholar
  27. Chang, H., Ge, L., Rizos, C., & Milne, T. (2004). Validation of DEMs derived from radar interferometry, airborne laser scanning and photogrammetry by using GPS-RTK. In Geoscience and Remote Sensing Symposium (IGARSS’04) (p. 2815). IEEE International.Google Scholar
  28. Chau, K., Wong, R., & Wu, J. (2002). Coefficient of restitution and rotational motions of rockfall impacts. International Journal of Rock Mechanics and Mining Sciences, 39(1), 69–77.CrossRefGoogle Scholar
  29. Chen, H., Chen, R., & Huang, T. (1994). An application of an analytical model to a slope subject to rockfalls. Bulletin of the Association of Engineering Geologists, 31(4), 447–458.Google Scholar
  30. Chiessi, V., D’Orefice, M., Mugnozza, G. S., Vitale, V., & Cannese, C. (2010). Geological, geomechanical and geostatistical assessment of rockfall hazard in San Quirico Village (Abruzzo, Italy). Geomorphology, 119(3), 147–161.CrossRefGoogle Scholar
  31. Crosta, G., & Agliardi, F. (2004). Parametric evaluation of 3D dispersion of rockfall trajectories. Natural Hazards and Earth System Science, 4(4), 583–598.CrossRefGoogle Scholar
  32. Day, R. W. (1997). Case studies of rockfall in soft versus hard rock. Environmental and Engineering Geoscience, 3(1), 133–140.CrossRefGoogle Scholar
  33. Dorren, L. K. (2003). A review of rockfall mechanics and modelling approaches. Progress in Physical Geography, 27(1), 69–87.CrossRefGoogle Scholar
  34. Dorren, L. K., & Seijmonsbergen, A. C. (2003). Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology, 56(1), 49–64.CrossRefGoogle Scholar
  35. Douglas, G. (1980). Magnitude frequency study of rockfall in Co., Antrim, N. Ireland. Earth Surface Processes, 5(2), 123–129.CrossRefGoogle Scholar
  36. Dussauge-Peisser, C., Helmstetter, A., Grasso, J., Hantz, D., Desvarreux, P., Jeannin, M., et al. (2002). Probabilistic approach to rock fall hazard assessment: Potential of historical data analysis. Natural Hazards and Earth System Science, 2(1/2), 15–26.CrossRefGoogle Scholar
  37. Erismann, T. (1986). Flowing, rolling, bouncing, sliding: Synopsis of basic mechanisms. Acta Mechanica, 64(1–2), 101–110.CrossRefGoogle Scholar
  38. Evans, S., & Hungr, O. (1993). The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, 30(4), 620–636.CrossRefGoogle Scholar
  39. Fanti, R., Gigli, G., Lombardi, L., Tapete, D., & Canuti, P. (2013). Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides, 10(4), 409–420.CrossRefGoogle Scholar
  40. Fanos, A.M., & Pradhan, B. (2016). Multi-scenario Rockfall Hazard Assessment Using LiDAR Data and GIS. Geotechnical and Geological Engineering, 34(5), 1375–1393.
  41. Fanos, A.M., Pradhan, B., Aziz, A.A., Jebur, M.N., & Park, H.J. (2016). Assessment of multi-scenario rockfall hazard based on mechanical parameters using high-resolution airborne laser scanning data and GIS in a tropical area. Environmental Earth Sciences, 75, 1129.
  42. Feng, Q., Sjögren, P., Stephansson, O., & Jing, L. (2001). Measuring fracture orientation at exposed rock faces by using a non-reflector total station. Engineering Geology, 59(1), 133–146.Google Scholar
  43. Ferrari, F., Giani, G. P., & Apuani, T. (2013). Why can rockfall normal restitution coefficient be higher than one? Rendiconti online Società Geologica Italiana, 122.Google Scholar
  44. Firpo, G., Salvini, R., Francioni, M., & Ranjith, P. (2011). Use of digital terrestrial photogrammetry in rocky slope stability analysis by distinct elements numerical methods. International Journal of Rock Mechanics and Mining Sciences, 48(7), 1045–1054.CrossRefGoogle Scholar
  45. Fish, M., & Lane, R. (2002). Linking New Hampshire’s rock cut management system with a geographic information system. Transportation Research Record: Journal of the Transportation Research Board, no., 1786, 51–59.CrossRefGoogle Scholar
  46. Florinsky, I. V. (1998). Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, 12(1), 47–62.CrossRefGoogle Scholar
  47. Frattini, P., Crosta, G. B., Agliardi, F., & Imposimato, S. (2013). Challenging calibration in 3D rockfall modelling. In Landslide science and practice (pp. 169–175). Berlin: Springer.Google Scholar
  48. Frattini, P., Crosta, G., Carrara, A., & Agliardi, F. (2008). Assessment of rockfall susceptibility by integrating statistical and physically-based approaches. Geomorphology, 94(3), 419–437.CrossRefGoogle Scholar
  49. Fritz, A., Kattenborn, T., & Koch, B. (2013). UAV-based photogrammetric point clouds-tree stem mapping in open stands in comparison to terrestrial laser scanner point clouds. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL, 1, W2.Google Scholar
  50. Froese, C. R., Moreno, F., Jaboyedoff, M., & Cruden, D. M. (2009). 25 years of movement monitoring on South Peak, Turtle Mountain: Understanding the hazard. Canadian Geotechnical Journal, 46(3), 256–269.CrossRefGoogle Scholar
  51. Gallay, M., Lloyd, C. D., McKinley, J., & Barry, L. (2013). Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: A case study from the Lake District, England. Computers & Geosciences, 51, 216–227.CrossRefGoogle Scholar
  52. Gardner, J. (1983). Rockfall frequency and distribution in the Highwood Pass area, Canadian Rocky Mountains. Zeitschrift für Geomorphologie, 27(3), 311–324.Google Scholar
  53. Gigli, G., Frodella, W., Mugnai, F., Tapete, D., Cigna, F., Fanti, R., et al. (2012). Instability mechanisms affecting cultural heritage sites in the Maltese Archipelago. Natural Hazards and Earth System Sciences, 12, 1883–1903.CrossRefGoogle Scholar
  54. Gigli, G., Morelli, S., Fornera, S., & Casagli, N. (2014). Terrestrial laser scanner and geomechanical surveys for the rapid evaluation of rock fall susceptibility scenarios. Landslides, 11(1), 1–14.CrossRefGoogle Scholar
  55. Giordan, D., Manconi, A., Facello, A., Baldo, M., Allasia, P., & Dutto, F. (2014). “Brief communication” the use of UAV in rock fall emergency scenario. Natural Hazards and Earth System Sciences Discussions, 2(6), 4011–4029.CrossRefGoogle Scholar
  56. Glover, J., Bartelt, P., Christen, M., & Gerber, W. (2015). Rockfall-simulation with irregular rock blocks. In Engineering geology for society and territory (Vol. 2, pp. 1729–1733). Berlin: Springer.Google Scholar
  57. Günther, A. (2003). SLOPEMAP: Programs for automated mapping of geometrical and kinematical properties of hard rock hill slopes. Computers & Geosciences, 29(7), 865–875.CrossRefGoogle Scholar
  58. Guzzetti, F., Crosta, G., Detti, R., & Agliardi, F. (2002). STONE: A computer program for the three-dimensional simulation of rock-falls. Computers & Geosciences, 28(9), 1079–1093.CrossRefGoogle Scholar
  59. Haarbrink, R., & Eisenbeiss, H. (2008). Accurate DSM production from unmanned helicopter systems. The International Archives of the Photogr ammetry, Remote Sensing and Spatial Information Sciences., 37, 1259–1264.Google Scholar
  60. Haneberg, W. C. (2007). Directional roughness profiles from three-dimensional photogrammetric or laser scanner point clouds. In E. Eberhardt, D. Stead, & T. Morrison (Eds.), Rock mechanics: Meeting society’s challenges and demands (p. 101).Google Scholar
  61. Hegg, C., & Kienholz, H. (1995). Determining paths of gravity-driven slope processes: The ‘vector tree model’. In Geographical information systems in assessing natural hazards (pp. 79–92). Berlin: Springer.Google Scholar
  62. Hengl, T., Heuvelink, G., & Van Loon, E. (2010). On the uncertainty of stream networks derived from elevation data: The error propagation approach. Hydrology and Earth System Sciences, 14(7), 1153–1165.CrossRefGoogle Scholar
  63. Hétu, B., & Gray, J. T. (2000). Effects of environmental change on scree slope development throughout the postglacial period in the Chic-Choc Mountains in the northern Gaspé Peninsula, Québec. Geomorphology, 32(3), 335–355.CrossRefGoogle Scholar
  64. Höfle, B., & Rutzinger, M. (2011). Topographic airborne LiDAR in geomorphology: A technological perspective. Zeitschrift für Geomorphologie, Supplementary Issues, 55(2), 1–29.CrossRefGoogle Scholar
  65. Hofton, M., Dubayah, R., Blair, J. B., & Rabine, D. (2006). Validation of SRTM elevations over vegetated and non-vegetated terrain using medium footprint lidar. Photogrammetric Engineering & Remote Sensing, 72(3), 279–285.CrossRefGoogle Scholar
  66. Hungr, O., & Evans, S. (1988). Engineering evaluation of fragmental rockfall hazards. In Proceedings of the Fifth International Symposium on Landslides, Lausanne, AA Balkema, Rotterdam, Netherlands (p. 685).Google Scholar
  67. Hutchinson, M. F., & Gallant, J. C. (2000). Digital elevation models and representation of terrain shape. In Terrain analysis: Principles and applications (pp. 29–50).Google Scholar
  68. Jaboyedoff, M., Choffet, M., Derron, M., Horton, P., Loye, A. Longchamp, C., et al. (2012a). Preliminary slope mass movement susceptibility mapping using DEM and LiDAR DEM. In Terrigenous mass movements (pp. 109–170). Berlin: Springer.Google Scholar
  69. Jaboyedoff, M., & Labiouse, V. (2011). Technical Note: Preliminary estimation of rockfall runout zones. Natural Hazards and Earth System Science, 11(3), 819–828.CrossRefGoogle Scholar
  70. Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M., Loye, A., Metzger, R., et al. (2012b). Use of LIDAR in landslide investigations: A review. Natural Hazards, 61(1), 5–28.CrossRefGoogle Scholar
  71. Jaboyedoff, M., Oppikofer, T., Locat, A., Locat, J., Turmel, D., Robitaille, D., et al. (2009b). Use of ground-based LIDAR for the analysis of retrogressive landslides in sensitive clay and of rotational landslides in river banks. Canadian Geotechnical Journal, 46, 1379–1390.CrossRefGoogle Scholar
  72. James, L. A., Watson, D. G., & Hansen, W. F. (2007). Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. Catena, 71(1), 132–144.CrossRefGoogle Scholar
  73. Janeras, M., Navarro, M., Arnó, G., Ruiz, A., Kornus, W., Talaya, J., et al. (2004). LiDAR applications to rock fall hazard assesment in Vall de Núria. In 4th ICA Mountain Cartography Workshop, Vall de Núria, Catalonia, Spain (p. 1).Google Scholar
  74. Janke, J. R. (2013). Using airborne LiDAR and USGS DEM data for assessing rock glaciers and glaciers. Geomorphology, 195, 118–130.CrossRefGoogle Scholar
  75. Jomelli, V., & Francou, B. (2000). Comparing the characteristics of rockfall talus and snow avalanche landforms in an Alpine environment using a new methodological approach: Massif des Ecrins, French Alps. Geomorphology, 35(3), 181–192.CrossRefGoogle Scholar
  76. Kemeny, J., & Post, R. (2003). Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Computers & Geosciences, 29(1), 65–77.CrossRefGoogle Scholar
  77. Keskin, İ. (2013). Evaluation of rock falls in an urban area: The case of Boğaziçi (Erzincan/Turkey). Environmental Earth Sciences, 70(4), 1619–1628.CrossRefGoogle Scholar
  78. Keylock, C., & Domaas, U. (1999). Evaluation of topographic models of rockfall travel distance for use in hazard applications. Arctic, Antarctic, and Alpine Research, 31(3), 312–320.CrossRefGoogle Scholar
  79. Kirkby, M., & Statham, I. (1975). Surface stone movement and scree formation. The Journal of Geology, 83(3), 349–362.CrossRefGoogle Scholar
  80. Ku, C. (2012). Assessing rockfall hazards using a three-dimensional numerical model based on high resolution DEM. In The Twenty-second International Offshore and Polar Engineering ConferenceInternational Society of Offshore and Polar Engineers (p. 790).Google Scholar
  81. Lan, H. Derek, Martin, C., & Lim, C. (2007). RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Computers & Geosciences, 33(2), 262–279.CrossRefGoogle Scholar
  82. Lan, H., Martin, C. D., Zhou, C., & Lim, C. H. (2010). Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology, 118(1), 213–223.CrossRefGoogle Scholar
  83. Lato, M., Diederichs, M. S., Hutchinson, D. J., & Harrap, R. (2009a). Optimization of LiDAR scanning and processing for automated structural evaluation of discontinuities in rockmasses. International Journal of Rock Mechanics and Mining Sciences, 46(1), 194–199.CrossRefGoogle Scholar
  84. Lato, M. J., Diederichs, M. S., Hutchinson, D. J., & Harrap, R. (2012). Evaluating roadside rockmasses for rockfall hazards using LiDAR data: Optimizing data collection and processing protocols. Natural Hazards, 60(3), 831–864.CrossRefGoogle Scholar
  85. Lato, M., Hutchinson, J., Diederichs, M., Ball, D., & Harrap, R. (2009b). Engineering monitoring of rockfall hazards along transportation corridors: Using mobile terrestrial LiDAR. Natural Hazards and Earth System Sciences, 9(3), 935–946.CrossRefGoogle Scholar
  86. Lato, M., Kemeny, J., Harrap, R., & Bevan, G. (2013). Rock bench: Establishing a common repository and standards for assessing rockmass characteristics using LiDAR and photogrammetry. Computers & Geosciences, 50, 106–114.CrossRefGoogle Scholar
  87. Lee, K., & Elliott, G. (1998). Rockfall: Application of computer simulation to design of preventive measures, planning, design and implementation of debris flow and rockfall hazards mitigation measures (pp. 47–65). Hong Kong: Association of Geo-Technical Specialists & Hong Kong Institution of Engineers.Google Scholar
  88. Leine, R., Schweizer, A., Christen, M., Glover, J., Bartelt, P., & Gerber, W. (2013). Simulation of rockfall trajectories with consideration of rock shape. Multibody System Dynamics, 32(2), 1–31.Google Scholar
  89. Li, L., & Lan, H. (2015). Probabilistic modeling of rockfall trajectories: A review. Bulletin of Engineering Geology and the Environment, 74(4), 1163–1176.CrossRefGoogle Scholar
  90. Lopez-Saez, J., Corona, C., Eckert, N., Stoffel, M., Bourrier, F., & Berger, F. (2016). Impacts of land-use and land-cover changes on rockfall propagation: Insights from the Grenoble conurbation. Science of the Total Environment, 547, 345–355.CrossRefGoogle Scholar
  91. Loye, A., Jaboyedoff, M., & Pedrazzini, A. (2009). Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Natural Hazards and Earth System Science, 9(5), 1643–1653.CrossRefGoogle Scholar
  92. Luckman, B. (1976). Rockfalls and rockfall inventory data: Some observations from Surprise Valley, Jasper National Park, Canada. Earth Surface Processes, 1(3), 287–298.CrossRefGoogle Scholar
  93. Ma, G., Matsuyama, H., Nishiyama, S., & Ohnishi, Y. (2011). Practical studies on rockfall simulation by DDA. Journal of Rock Mechanics and Geotechnical Engineering, 3(1), 57–63.CrossRefGoogle Scholar
  94. Macciotta, R., Cruden, D., Martin, C., & Morgenstern, N. (2011). Combining geology, morphology and 3D modelling to understand the rock fall distribution along the railways in the Fraser River Valley, between Hope and Boston Bar. In BC International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering, Vancouver, BC, Canada.Google Scholar
  95. Macciotta, R., Martin, C. D., & Cruden, D. M. (2014). Probabilistic estimation of rockfall height and kinetic energy based on a three-dimensional trajectory model and Monte Carlo simulation. Landslides, 12(4), 1–16.Google Scholar
  96. Martin, D. C. (1988). Rockfall control: An update (technical note). Bulletin Association Engineering Geologists, 13(14), 329–335.Google Scholar
  97. Masuya, H., Amanuma, K., Nishikawa, Y., & Tsuji, T. (2009). Basic rockfall simulation with consideration of vegetation and application to protection measure. Natural Hazards and Earth System Science, 9(6), 1835–1843.CrossRefGoogle Scholar
  98. Michoud, C., Derron, M., Horton, P., Jaboyedoff, M., Baillifard, F., Loye, A., et al. (2012). Rockfall hazard and risk assessments along roads at a regional scale: Example in Swiss Alps. Natural Hazards and Earth System Sciences, 12(3), 615–629.CrossRefGoogle Scholar
  99. Mikoš, M., Petje, U., & Ribičič, M. (2006). Application of a rockfall simulation program in an alpine valley in Slovenia (pp. 199–211). Slopes, Failures and Landslides: Disaster Mitigation of Debris Flows.Google Scholar
  100. Monserrat, O., & Crosetto, M. (2008). Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS Journal of Photogrammetry and Remote Sensing, 63(1), 142–154.CrossRefGoogle Scholar
  101. Nelson, A., Reuter, H. I., & Gessler, P. (2009). Chapter 3 DEM production methods and sources. Developments in Soil Science, 33, 65–85.Google Scholar
  102. Niethammer, U., James, M., Rothmund, S., Travelletti, J., & Joswig, M. (2012). UAV-based remote sensing of the Super-Sauze landslide: Evaluation and results. Engineering Geology, 128, 2–11.CrossRefGoogle Scholar
  103. Niethammer, U., Rothmund, S., James, M., Travelletti, J., & Joswig, M. (2010). UAV-based remote sensing of landslides. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 38(Part 5), 496–501.Google Scholar
  104. Olaya, V. (2009). Chapter 6 basic land-surface parameters. Developments in Soil Science, 33, 141–169.Google Scholar
  105. Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M., & Metzger, R. (2009). Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning. Natural Hazards and Earth System Science, 9(3), 1003–1019.CrossRefGoogle Scholar
  106. Oppikofer, T., Jaboyedoff, M., & Keusen, H. (2008). Collapse at the eastern Eiger flank in the Swiss Alps. Nature Geoscience, 1(8), 531–535.CrossRefGoogle Scholar
  107. Papathanassiou, G., Marinos, V., Vogiatzis, D., & Valkaniotis, S. (2013). A rock fall analysis study in Parnassos area, Central Greece. In Landslide science and practice (pp. 67–72). Berlin: Springer.Google Scholar
  108. Pfeiffer, T. J., & Bowen, T. (1989). Computer simulation of rockfalls. Bulletin of the Association of Engineering Geologists, 26(1), 135–146.Google Scholar
  109. Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.CrossRefGoogle Scholar
  110. Pradhan, B., Mansor, S., Pirasteh, S., & Buchroithner, M. F. (2011). Landslide hazard and risk analyses at a landslide prone catchment area using statistical based geospatial model. International Journal of Remote Sensing, 32(14), 4075–4087.CrossRefGoogle Scholar
  111. Pradhan, B., Mansor, S., Ramli, A. R., Mohamed Sharif, A. R. B., & Sandeep, K. (2005). LiDAR data compression using wavelets. Remote Sensing International Society for Optics and Photonics, 598305.Google Scholar
  112. Pradhan, B., OHb, H., & Buchroithner, M. (2010). Use of remote sensing data and GIS to produce a landslide susceptibility map of a landslide prone area using a weight of evidence model. Assessment, 11, 13.Google Scholar
  113. Raaflaub, L. D., & Collins, M. J. (2006). The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environmental Modelling and Software, 21(5), 710–732.CrossRefGoogle Scholar
  114. Rayburg, S., Thoms, M., & Neave, M. (2009). A comparison of digital elevation models generated from different data sources. Geomorphology, 106(3), 261–270.CrossRefGoogle Scholar
  115. Reuter, H. I., Hengl, T., Gessler, P., & Soille, P. (2009). Chapter 4 Preparation of DEMs for geomorphometric analysis, Developments in Soil Science, 33, 87–120.Google Scholar
  116. Richards, L. (1988). Rockfall protection: A review of current analytical and design methods. Secondo ciclo di conferenze di meccanica ed ingegneria delle rocce, MIR, Politecnico di Torino, 11, 1–13.Google Scholar
  117. Ritchie, A. M. (1963). Evaluation of rockfall and its control. Highway research record, no., 17, 13–28.Google Scholar
  118. Rodriguez, E., Morris, C. S., & Belz, J. E. (2006). A global assessment of the SRTM performance. Photogrammetric Engineering & Remote Sensing, 72(3), 249–260.CrossRefGoogle Scholar
  119. Rosser, N., Lim, M., Petley, D., Dunning, S., & Allison, R. (2007). Patterns of precursory rockfall prior to slope failure. Journal of Geophysical Research: Earth Surface (2003–2012), 112(F4), 1–14.Google Scholar
  120. Ruff, M., & Czurda, K. (2008). Landslide susceptibility analysis with a heuristic approach in the Eastern Alps (Vorarlberg, Austria). Geomorphology, 94(3), 314–324.CrossRefGoogle Scholar
  121. Ruiz, J., Diaz-Mas, L., Perez, F., & Viguria, A. (2013). Evaluating the accuracy of DEM generation algorithms from UAV imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 333–337.CrossRefGoogle Scholar
  122. Sabatakakis, N., Depountis, N., & Vagenas, N. (2015). Evaluation of rockfall restitution coefficients. In Engineering geology for society and territory (Vol. 2, pp. 2023–2026). Berlin: Springer.Google Scholar
  123. Salvini, R., Francioni, M., Riccucci, S., Bonciani, F., & Callegari, I. (2013). Photogrammetry and laser scanning for analyzing slope stability and rock fall runout along the Domodossola-Iselle railway, the Italian Alps. Geomorphology, 185, 110–122.CrossRefGoogle Scholar
  124. Samodra, G., Chen, G., Sartohadi, J., Hadmoko, D., & Kasama, K. (2014). Automated landform classification in a rockfall-prone area, Gunung Kelir, Java. Earth Surface Dynamics, 2(1), 339–348.CrossRefGoogle Scholar
  125. Samodra, G., Sartohadi, J., Chen, G., & Kasama, K. (2013). Application of supervised landform classification of 9-unit slope model for preliminary rockfall risk analysis in Gunung Kelir, Java (pp. O-8-1–O-8-4), Geo Scholar
  126. Shary, P. A., Sharaya, L. S., & Mitusov, A. V. (2002). Fundamental quantitative methods of land surface analysis. Geoderma, 107(1), 1–32.CrossRefGoogle Scholar
  127. Slob, S., Hack, H., & Turner, A. K. (2002). An approach to automate discontinuity measurements of rock faces using laser scanning techniques. Proceedings of ISRM EUROCK, 2002, 87–94.Google Scholar
  128. Spadari, M., Kardani, M. De, Carteret, R., Giacomini, A., Buzzi, O., Fityus, S., et al. (2013). Statistical evaluation of rockfall energy ranges for different geological settings of New South Wales, Australia. Engineering Geology, 158, 57–65.CrossRefGoogle Scholar
  129. Spang, R., & Rautenstrauch, R. (1988). Empirical and mathematical approaches to rockfall protection and their practical applications. In 5th International Symposium on Landslides (p. 1237).Google Scholar
  130. Statham, I., & Francis, S. (1986). Influence of scree accumulation and weathering on the development of steep mountain slopes (pp. 245–267). Hillslope Processes. (Abrahams AD).Google Scholar
  131. Stephenne, N., Frippiat, C., Veschkens, M., Salmon, M., & Pacyna, D. (2014). Use of a LiDAR high resolution digital elevation model for risk stability analysis. EARSeL eProceedings, 13(S1), 24–29.Google Scholar
  132. Stock, G. M., Bawden, G. W., Green, J. K., Hanson, E., Downing, G., Collins, B. D., et al. (2011). High-resolution three-dimensional imaging and analysis of rock falls in Yosemite Valley, California. Geosphere, 7(2), 573–581.CrossRefGoogle Scholar
  133. Strozzi, T., Delaloye, R., Kääb, A., Ambrosi, C., Perruchoud, E., & Wegmüller, U. (2010). Combined observations of rock mass movements using satellite SAR interferometry, differential GPS, airborne digital photogrammetry, and airborne photography interpretation. Journal of Geophysical Research: Earth Surface (2003–2012), 115(F1).Google Scholar
  134. Sturzenegger, M., & Stead, D. (2009). Quantifying discontinuity orientation and persistence on high mountain rock slopes and large landslides using terrestrial remote sensing techniques. Natural Hazards and Earth System Science, 9(2), 267–287.CrossRefGoogle Scholar
  135. Sturzenegger, M., Yan, M., Stead, D., & Elmo, D. (2007). Application and limitations of ground-based laser scanning in rock slope characterization. In Proceedings of the First Canadian US Rock Mechanics Symposium (p. 29).Google Scholar
  136. Tatone, B. S., & Grasselli, G. (2009). A method to evaluate the three-dimensional roughness of fracture surfaces in brittle geomaterials. Review of Scientific Instruments, 80(12), 125110.CrossRefGoogle Scholar
  137. Temme, A. J. A. M., Heuvelink, G. B. M., Schoorl, J. M., & Claessens, L. (2009). Chapter 5 geostatistical simulation and error propagation in geomorphometry. Developments in Soil Science, 33, 121–140.Google Scholar
  138. Tonini, M., & Abellan, A. (2014). “Rockfall detection from terrestrial LiDAR point clouds: A clustering approach using R”, Journal of Spatial Information Science, no. To appear JOSIS issue, 8, 95–101.Google Scholar
  139. Topal, T., Akin, M., & Ozden, U. A. (2007). Assessment of rockfall hazard around Afyon Castle, Turkey. Environmental Geology, 53(1), 191–200.CrossRefGoogle Scholar
  140. Varnes, D. J. (1978). Slope movement types and processes. Transportation Research Board Special Report, no., 176, 11–33.Google Scholar
  141. Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice (p. 64).Google Scholar
  142. Vidrih, R., Ribičič, M., & Suhadolc, P. (2001). Seismogeological effects on rocks during the 12 April 1998 upper Soča Territory earthquake (NW Slovenia). Tectonophysics, 330(3), 153–175.CrossRefGoogle Scholar
  143. Vijayakumar, S., Yacoub, T., & Curran, J. H. (2011). On the effect of rock size and shape in rockfall analyses. USA: Proceedings of the US Rock Mechanics Symposium (ARMA) San Francisco CA.Google Scholar
  144. Vijayakumar, S., Yacoub, T., Ranjram, M., & Curran, J. (2012). Effect of rockfall shape on normal coefficient of restitution. In 46th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.Google Scholar
  145. Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., et al. (2011). Rockfall characterisation and structural protection-a review. Natural Hazards and Earth System Sciences, 11, 2617–2651.CrossRefGoogle Scholar
  146. Wang, I., & Lee, C. (2012). Simulation and statistical analysis of motion behavior of a single rockfall. International Journal of Civil and Environmental Engineering, 61, 853–862.Google Scholar
  147. Webster, T. L., & Dias, G. (2006). An automated GIS procedure for comparing GPS and proximal LiDAR elevations. Computers & Geosciences, 32(6), 713–726.CrossRefGoogle Scholar
  148. Wieczorek, G. F., Snyder, J. B., Waitt, R. B., Morrissey, M. M., Uhrhammer, R. A., Harp, E. L., et al. (2000). Unusual July 10, 1996, rock fall at Happy Isles, Yosemite National Park, California. Geological Society of America Bulletin, 112(1), 75–85.CrossRefGoogle Scholar
  149. Wilson, J. P. (2012). Digital terrain modeling. Geomorphology, 137(1), 107–121.CrossRefGoogle Scholar
  150. Wilson, J. P., Aggett, G., & Yongxin, D. (2008). Water in the landscape: A review of contemporary flow routing algorithms. In Advances in digital terrain analysis (pp. 213–236). Berlin: Springer.Google Scholar
  151. Wilson, J. P., & Burrough, P. A. (1999). Dynamic modeling, geostatistics, and fuzzy classificaiton: New sneakers for a new geography? Annals of the Association of American Geographers, 89(4), 736–746.Google Scholar
  152. Wise, S. (2000). Assessing the quality for hydrological applications of digital elevation models derived from contours. Hydrological Processes, 14(11–12), 1909–1929.CrossRefGoogle Scholar
  153. Wise, S. (2011). Cross-validation as a means of investigating DEM interpolation error. Computers & Geosciences, 37(8), 978–991.CrossRefGoogle Scholar
  154. Wyllie, D. C. (2014). Calibration of rock fall modeling parameters. International Journal of Rock Mechanics and Mining Sciences, 67, 170–180.CrossRefGoogle Scholar
  155. Yoshimatsu, H., & Abe, S. (2006). A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides, 3(2), 149–158.CrossRefGoogle Scholar
  156. Youssef, A. M., Pradhan, B., Al-Kathery, M., Bathrellos, G. D., & Skilodimou, H. D. (2015). Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation. Journal of African Earth Sciences, 101, 309–321.CrossRefGoogle Scholar
  157. Zandbergen, P. (2008). Applications of shuttle radar topography mission elevation data. Geography Compass, 2(5), 1404–1431.CrossRefGoogle Scholar
  158. Zinggeler, A., Krummenacher, B., & Kienholz, H. (1991). Steinschlagsimulation in Gebirgswäldern. Berichte und Forschungen, 3, 61–70.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations