Debris Flow Susceptibility Assessment Using Airborne Laser Scanning Data

  • Biswajeet PradhanEmail author
  • Bahareh Kalantar
  • Waleed M. Abdulwahid
  • Bui Tien Dieu


Debris flows and related landslide failure phenomena occur in many mountainous areas worldwide and pose significant hazards to settlements, human lives, and transportation corridors. Debris flows occur on different terrains where sufficient debris materials are available and the angle of slope is steep enough. Flow behavior is of different types, namely, confined, unconfined, and transition.


Debris Flow Digital Elevation Model Thematic Layer Debris Flow Event RAMMS Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Armanini, A., & Scotton, P. (1992). Experimental analysis on the dynamic impact of a debris flow on structures. Internationales symposion interpraevent, 6, 107–116.Google Scholar
  2. Bartelt, P., Bühler, Y., Buser, O., Christen, M., & Meier, L. (2012). Modeling mass‐dependent flow regime transitions to predict the stopping and depositional behavior of snow avalanches. Journal of Geophysical Research: Earth Surface, 117(F1).Google Scholar
  3. Bathurst, J. C., Burton, A., & Ward, T. J. (1997). Debris flow run-out and landslide sediment delivery model tests. Journal of Hydraulic Engineering, 123(5), 410–419.Google Scholar
  4. Baumann, V., Wick, E., Horton, P., & Jaboyedoff, M. (2011, October). Debris flow susceptibility mapping at a regional scale along the National Road N7, Argentina. In Proceedings of the 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering (pp. 2–6).Google Scholar
  5. Berger, C., McArdell, B. W., & Schlunegger, F. (2011). Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. Journal of Geophysical Research: Earth Surface, 116(F1).Google Scholar
  6. Berger, C., McArdell, B., & Lauber, G. (2012). Murgangmodellierung im Illgraben, Schweiz. mit dem numerischen 2D-Modell RAMMS. Murgangmodellierung in der Praxis. In 12th Congress Interpraevent.Google Scholar
  7. Blahut, J., Horton, P., Sterlacchini, S., & Jaboyedoff, M. (2010). Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy. Natural Hazards and Earth System Sciences, 10(11), 2379–2390.CrossRefGoogle Scholar
  8. Carrara, A., Cardinali, M., Guzzetti, F., & Reichenbach, P. (1995). GIS technology in mapping landslide hazard. In Geographical information systems in assessing natural hazards (pp. 135–175). Netherlands: Springer.Google Scholar
  9. Christen, M., Bühler, Y., Bartelt, P., Leine, R., Glover, J., Schweizer, A., et al. (2012). Integral hazard management using a unified software environment. In 12th Congress Interpraevent (pp. 77-86).Google Scholar
  10. Christen, M., Kowalski, J., & Bartelt, P. (2010). RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology, 63(1), 1–14.CrossRefGoogle Scholar
  11. Chung, C. J. F., & Fabbri, A. G. (1999). Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65(12), 1389–1399.Google Scholar
  12. Dai, F. C., & Lee, C. F. (2002). Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42(3), 213–228.CrossRefGoogle Scholar
  13. Deubelbeiss, Y., & Graf, C. (2013). Two different starting conditions in numerical debris flow models–Case study at Dorfbach, Randa (Valais, Switzerland). GRAF, C.(Red.) Mattertal–ein Tal in Bewegung. Publikation zur Jahrestagung der Schweizerischen Geomorphologischen Gesellschaft, 29, 125–138.Google Scholar
  14. Egli, T. (2005). Wegleitung Objektschutz gegen gravitative Naturgefahren. VKF.Google Scholar
  15. Fannin, R. J., & Wise, M. P. (2001). An empirical-statistical model for debris flow travel distance. Canadian Geotechnical Journal, 38(5), 982–994.CrossRefGoogle Scholar
  16. Fischer, L., Rubensdotter, L., Sletten, K., Stalsberg, K., Melchiorre, C., Horton, P., et al. (2012, June). Debris flow modeling for susceptibility mapping at regional to national scale in Norway. In Proceedings of the 11th International and 2nd North American Symposium on Landslides (pp. 3–8).Google Scholar
  17. Frattini, P., Crosta, G., & Carrara, A. (2010). Techniques for evaluating the performance of landslide susceptibility models. Engineering Geology, 111(1), 62–72.CrossRefGoogle Scholar
  18. Glade, T. (2005). Linking debris-flow hazard assessments with geomorphology. Geomorphology, 66(1), 189–213.CrossRefGoogle Scholar
  19. Graf, C., & McArdell, B. W. (2009, September). Debris-flow monitoring and debris-flow runout modelling before and after construction of mitigation measures: an example from an instable zone in the Southern Swiss Alps. In La géomorphologie alpine: entre patrimoine et contrainte. Actes du colloque de la Société Suisse de Géomorphologie (pp. 3–5).Google Scholar
  20. Guinau, M., Vilajosana, I., & Vilaplana, J. M. (2007). GIS-based debris flow source and runout susceptibility assessment from DEM data? A case study in NW Nicaragua. Natural Hazards and Earth System Science, 7(6), 703–716.CrossRefGoogle Scholar
  21. Haeberli, W. (1983). Frequency and characteristics of glacier floods in the Swiss Alps. Annals of Geophysics, 4: 85–90.Google Scholar
  22. Hofmeister, R. J., & Miller, D. J. (2003). GIS-based modeling of debris-flow initiation, transport and deposition zones for regional hazard assessments in western Oregon, USA. In Debris-flow hazards mitigation: Mechanics, prediction, and assessment (pp. 1141–1149). Rotterdam: Millpress.Google Scholar
  23. Holmgren, P. (1994). Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrological processes, 8(4), 327–334.Google Scholar
  24. Horton, P., Jaboyedoff, M., Bardou, E., Locat, J., Perret, D., Turmel, D., et al. (2008). Debris flow susceptibility mapping at a regional scale.Google Scholar
  25. Horton, P., Jaboyedoff, M., Rudaz, B. E. A., & Zimmermann, M. (2013). Flow-R, a model for susceptibility mapping of debris flows and other gravitational hazards at a regional scale. Natural Hazards and Earth System Sciences, 13(4), 869.Google Scholar
  26. Horton, P., Jaboyedoff, M., Zimmermann, M., Mazotti, B., & Longchamp, C. (2011). Flow-R, a model for debris flow susceptibility mapping at a regional scale–some case studies. Italian Journal of Engineering Geology, 2, 875–884.Google Scholar
  27. Hu, K., Wei, F., & Li, Y. (2011). Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia Ravine, China. Earth Surface Processes and Landforms, 36(9), 1268–1278.CrossRefGoogle Scholar
  28. Huggel, C., Kääb, A., Haeberli, W., & Krummenacher, B. (2003). Regional-scale GIS-models for assessment of hazards from glacier lake outbursts: evaluation and application in the Swiss Alps. Natural Hazards and Earth System Science, 3(6), 647–662. Google Scholar
  29. Hübl, J., & Holzinger, G. (2003). Entwicklung von Grundlagen zur Dimensionierung kronenoffener Bauwerke für die Geschiebebewirtschaftung in Wildbächen: Kleinmaßstäbliche Modellversuche zur Wirkung von Murbrechern. WLS Report, 50.Google Scholar
  30. Hübl, J., Suda, J., Proske, D., Kaitna, R., & Scheidl, C. (2009, September). Debris flow impact estimation. In Eleventh International Symposium on Water Management and Hydraulic Engineering (Vol. 1, pp. 137–148).Google Scholar
  31. Hürlimann, M., Copons, R., & Altimir, J. (2006). Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology, 78(3), 359–372.CrossRefGoogle Scholar
  32. Iovine, G., Di Gregorio, S., & Lupiano, V. (2003). Debris-flow susceptibility assessment through cellular automata modeling: an example from 15? 16 December 1999 disaster at Cervinara and San Martino Valle Caudina (Campania, southern Italy). Natural Hazards and Earth System Science, 3(5), 457–468. Google Scholar
  33. Ishikawa, N., Inoue, R., Hayashi, K., Hasegawa, Y., & Mizuyama, T. (2008). Experimental approach on measurement of impulsive fluid force using debris flow model.Google Scholar
  34. Iverson, R. M., & Denlinger, R. P. (2001). Mechanics of debris flows and debris-laden flash floods. In Seventh Federal Interagency Sedimentation Conference (pp. IV-1–IV-8).Google Scholar
  35. Iverson, R. M., Reid, M. E., Logan, M., LaHusen, R. G., Godt, J. W., & Griswold, J. P. (2011). Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nature Geoscience, 4(2), 116–121.CrossRefGoogle Scholar
  36. Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M. H., Loye, A., Metzger, R., et al. (2012). Use of LIDAR in landslide investigations: A review. Natural Hazards, 61(1), 5–28.CrossRefGoogle Scholar
  37. Jaedicke, C., Lied, K., & Kronholm, K. (2009). Integrated database for rapid mass movements in Norway. Natural Hazards and Earth System Sciences, 9(2), 469–479.CrossRefGoogle Scholar
  38. Jaedicke, C., Solheim, A., Blikra, L. H., Stalsberg, K., Sorteberg, A., Aaheim, A., et al. (2008). Spatial and temporal variations of Norwegian geohazards in a changing climate, the GeoExtreme Project. Natural Hazards and Earth System Sciences, 8(4), 893–904.CrossRefGoogle Scholar
  39. Jakob, M. (2005). Debris-flow hazard analysis. In Debris-flow hazards and related phenomena (pp. 411–443). Berlin: Springer.Google Scholar
  40. Jakob, M., Stein, D., & Ulmi, M. (2012). Vulnerability of buildings to debris flow impact. Natural Hazards, 60(2), 241–261.Google Scholar
  41. Kappes, M. S., Malet, J. P., Remaître, A., Horton, P., Jaboyedoff, M., & Bell, R. (2011). Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France. Natural Hazards and Earth System Sciences, 11(2), 627–641.CrossRefGoogle Scholar
  42. König, U. (2006). Real scale debris flow tests in the Schesatobel-valley (Doctoral dissertation. Master’s thesis, University of Natural Resources and Life Sciences, Vienna, Austria).Google Scholar
  43. Lari, S., Crosta, G. B., Frattini, P., Horton, P., & Jaboyedoff, M. (2011, June). Regional-scale debris-flow risk assessment for an alpine valley. In Proceedings of the 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Padua, Italy (pp. 14–17).Google Scholar
  44. Lari, S., Frattini, P., Crosta, G. B., Jaboyedoff, M., & Horton, P. (2010). Rockfall and debris flow societal and economic risk assessment at the regional scale. In Acts 10th World Water Day, Accademia Nazionale dei Lincei, Rome, 22 (pp. 179–187).Google Scholar
  45. Lorente, A., Beguería, S., Bathurst, J. C., & García-Ruiz, J. M. (2007). Debris flow characteristics and relationships in the Central Spanish Pyrenees.Google Scholar
  46. Melelli, L., & Taramelli, A. (2004). An example of debris-flows hazard modeling using GIS. Natural Hazards and Earth System Science, 4(3), 347–358.CrossRefGoogle Scholar
  47. Monney, J., Herzog, B., Wenger, M., Wendeler, C., & Roth, A. (2007). Einsatz von multiplen Stahlnetzbarrieren als Murgangruckhalt. Wasser Energie Luft, 3, 255–259.Google Scholar
  48. Naef, D., Rickenmann, D., Rutschmann, P., & McArdell, B. W. (2006). Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Natural Hazards and Earth System Science, 6(1), 155–165.CrossRefGoogle Scholar
  49. Pradhan, B., & Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: Backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling and Software, 25(6), 747–759.CrossRefGoogle Scholar
  50. Proske, D., Kaitna, R., Suda, J., & Hübl, J. (2008). Abschätzung einer Anprallkraft für murenexponierte Massivbauwerke. Bautechnik, 85(12), 803–811.CrossRefGoogle Scholar
  51. Rickenmann, D., Laigle, D. M. B. W., McArdell, B. W., & Hübl, J. (2006). Comparison of 2D debris-flow simulation models with field events. Computational Geosciences, 10(2), 241–264.CrossRefGoogle Scholar
  52. Rickenmann, D., & Zimmermann, M. (1993). The 1987 debris flows in Switzerland: documentation and analysis. Geomorphology, 8(2-3), 175–189.Google Scholar
  53. Sassa, K. (1989). Special lecture: Geotechnical model for the motion of landslides. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 26(2), 88.Google Scholar
  54. Scheidl, C., Rickenmann, D., & McArdell, B. W. (2013). Runout prediction of debris flows and similar mass movements. In Landslide science and practice (pp. 221–229). Berlin: Springer.Google Scholar
  55. Scheuner T., Schwab S., & McArdell B. (2011). Application of a two-dimensional numerical model in risk and hazard assessment in Switzerland. In 5th DFHM, Padua, Italy.Google Scholar
  56. Schürch, P., Densmore, A. L., Rosser, N. J., & McArdell, B. W. (2011). Dynamic controls on erosion and deposition on debris-flow fans. Geology, 39(9), 827–830.CrossRefGoogle Scholar
  57. Van Westen, C. J., Van Asch, T. W., & Soeters, R. (2006). Landslide hazard and risk zonation—Why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65(2), 167–184.CrossRefGoogle Scholar
  58. Wendeler, C. S. I. (2008). Murgangrückhalt in Wildbächen: Grundlagen zu Planung und Berechnung von flexiblen Barrieren.Google Scholar
  59. Wendeler, C., Volkwein, A., Roth, A., Denk, M., & Wartmann, S. (2007). Field measurements and numerical modelling of flexible debris flow barriers. In Debris-flow hazards mitigation: Mechanics, prediction, and assessment (pp. 681–687). Rotterdam: Millpress.Google Scholar
  60. Zhang, S. (1993). A comprehensive approach to the observation and prevention of debris flows in China. Natural Hazards, 7(1), 1–23.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Biswajeet Pradhan
    • 1
    Email author
  • Bahareh Kalantar
    • 1
  • Waleed M. Abdulwahid
    • 1
  • Bui Tien Dieu
    • 2
  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia
  2. 2.Department of Business Administration and Computer Science, Faculty of Art and SciencesTelemark University CollegeTelemarkNorway

Personalised recommendations