Slope Vulnerability and Risk Assessment Using High-Resolution Airborne Laser Scanning Data

  • Biswajeet PradhanEmail author
  • Norbazlan Mohd Yusof


Natural hazards, such as landslides, earthquakes, and floods, result in considerable losses of lives and properties. Natural disasters are in fact the main cause of irrecoverable damages worldwide.


Geographic Information System Landslide Susceptibility Slope Failure Landslide Hazard Landslide Occurrence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93–106.CrossRefGoogle Scholar
  2. Alimohammadlou, Y., Najafi, A., & Yalcin, A. (2013). Landslide process and impacts: A proposed classification method. Catena, 104, 219–232.CrossRefGoogle Scholar
  3. Alonso, E. E., & Pinyol, N. M. (2010). Criteria for rapid sliding I. A review of Vaiont case. Engineering Geology, 114(3), 198–210.CrossRefGoogle Scholar
  4. Althuwaynee, O. F., Pradhan, B., & Ahmad, N. (2014a). Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas. Landslides, 12, 1–15.Google Scholar
  5. Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120–135.CrossRefGoogle Scholar
  6. Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014b). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36.CrossRefGoogle Scholar
  7. Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1), 15–31.CrossRefGoogle Scholar
  8. Bell, R., & Glade, T. (2004). Quantitative risk analysis for landslides? Examples from Bíldudalur, NW-Iceland. Natural Hazard Earth System, 4(1), 117–131.CrossRefGoogle Scholar
  9. Budimir, M., Atkinson, P., & Lewis, H. (2015). A systematic review of landslide probability mapping using logistic regression. Landslides, 12(3), 1–18.CrossRefGoogle Scholar
  10. Bulut, F., Boynukalin, S., Tarhan, F., & Ataoglu, E. (2000). Reliability of landslide isopleth maps. Bulletin of Engineering Geology and the Environment, 58(2), 95–98.CrossRefGoogle Scholar
  11. Calil, J., Beck, M. W., Gleason, M., Merrifield, M., Klausmeyer, K., & Newkirk, S. (2015). Aligning natural resource conservation and flood hazard mitigation in California. PLoS ONE, 10(7), e0132651. doi: 10.1371/journal.pone.0132651 CrossRefGoogle Scholar
  12. Calvo, B., & Savi, F. (2009). A real-world application of Monte Carlo procedure for debris flow risk assessment. Computers & Geosciences, 35(5), 967–977.CrossRefGoogle Scholar
  13. Chau, K., Sze, Y., Fung, M., Wong, W., Fong, E., & Chan, L. (2004). Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Computers & Geosciences, 30(4), 429–443.CrossRefGoogle Scholar
  14. Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236–250.CrossRefGoogle Scholar
  15. Corominas, J., Van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., et al. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263.Google Scholar
  16. Crovelli, R. A. (2000). Probability models for estimation of number and costs of landslides. Reston, VA: US Geological Survey.Google Scholar
  17. Crozier, M. J., & Glade, T. (2006). Landslide hazard and risk: Issues, concepts and approach. Landslide Hazard and Risk (Wiley, West Sussex), 14, 1–40.Google Scholar
  18. Cui, P., Zhu, Y. Y., Han, Y. S., Chen, X. Q., & Zhuang, J. Q. (2009). The 12 May Wenchuan earthquake-induced landslide lakes: Distribution and preliminary risk evaluation. Landslides, 6(3), 209–223.CrossRefGoogle Scholar
  19. Dai, F., Lee, C., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87.CrossRefGoogle Scholar
  20. Dang, N. M., Babel, M. S., & Luong, H. T. (2011). Evaluation of food risk parameters in the Day River flood diversion area, Red River delta, Vietnam. Natural Hazards, 56(1), 169–194.CrossRefGoogle Scholar
  21. Das, I., Sahoo, S., van Westen, C., Stein, A., & Hack, R. (2010). Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114(4), 627–637.CrossRefGoogle Scholar
  22. Demir, G., Aytekin, M., & Akgun, A. (2015). Landslide susceptibility mapping by frequency ratio and logistic regression methods: An example from Niksar-Resadiye (Tokat, Turkey). Arabian Journal of Geosciences, 8(3), 1801–1812.CrossRefGoogle Scholar
  23. Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165.CrossRefGoogle Scholar
  24. Dou, J., Bui, D. T., Yunus, A. P., Jia, K., Song, X., Revhaug, I., et al. (2015). Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan. PloS One, 10(7), e0133262. doi: 10.1371/journal.pone.0133262 CrossRefGoogle Scholar
  25. Dou, J., Oguchi, T., Hayakawa, Y. S., Uchiyama, S., Saito, H., & Paudel, U. (2014). GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan. Landslide Science for a Safer Geoenvironment (pp. 419–424). Berlin: Springer.Google Scholar
  26. Dragićević, S., Lai, T., & Balram, S. (2015). GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat International, 45, 114–125.CrossRefGoogle Scholar
  27. Feizizadeh, B., & Blaschke, T. (2013). GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65(3), 2105–2128.CrossRefGoogle Scholar
  28. Fuchs, S., Heiss, K., & Hübl, J. (2007). Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazard Earth Systems, 7(5), 495–506.CrossRefGoogle Scholar
  29. Galli, M., & Guzzetti, F. (2007). Landslide vulnerability criteria: A case study from Umbria, Central Italy. Environmental Management, 40(4), 649–665.CrossRefGoogle Scholar
  30. Glade, T., Crozier, M., & Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure and Applied Geophysics, 157(6–8), 1059–1079.CrossRefGoogle Scholar
  31. Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1), 181–216.CrossRefGoogle Scholar
  32. Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17.CrossRefGoogle Scholar
  33. Haneberg, W. C. (2004). A rational probabilistic method for spatially distributed landslide hazard assessment. Environmental and Engineering Geoscience, 10(1), 27–43.CrossRefGoogle Scholar
  34. He, X., Hong, Y., Yu, X., Cerato, A. B., Zhang, X., & Komac, M. (2014). Landslides susceptibility mapping in Oklahoma state using GIS-based weighted linear combination method. In Landslide science for a safer geoenvironment (pp. 371–377).Google Scholar
  35. Huang, J., Lyamin, A., Griffiths, D., Krabbenhoft, K., & Sloan, S. (2013). Quantitative risk assessment of landslide by limit analysis and random fields. Computers and Geotechnics, 53, 60–67.CrossRefGoogle Scholar
  36. Jaiswal, P., van Westen, C. J., & Jetten, V. (2010). Quantitative landslide hazard assessment along a transportation corridor in southern India. Engineering Geology, 116(3), 236–250.CrossRefGoogle Scholar
  37. Jaiswal, P., van Westen, C. J., & Jetten, V. (2011). Quantitative assessment of landslide hazard along transportation lines using historical records. Landslides, 8(3), 279–291.CrossRefGoogle Scholar
  38. Jakob, M., Stein, D., & Ulmi, M. (2012). Vulnerability of buildings to debris flow impact. Natural Hazards, 60(2), 241–261.CrossRefGoogle Scholar
  39. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.CrossRefGoogle Scholar
  40. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE J-STARS, 8(2), 674–690.Google Scholar
  41. Joshi, C., de Leeuw, J., & van Duren, I. C. (Eds.) (2004). Remote sensing and GIS applications for mapping and spatial modelling of invasive species. In Proceedings of ISPRS.Google Scholar
  42. Kanungo, D., Arora, M., Gupta, R., & Sarkar, S. (2008). Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides, 5(4), 407–416.CrossRefGoogle Scholar
  43. Kappes, M. S., Keiler, M., von Elverfeldt, K., & Glade, T. (2012). Challenges of analyzing multi-hazard risk: A review. Natural Hazards, 64(2), 1925–1958.CrossRefGoogle Scholar
  44. Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425–439.CrossRefGoogle Scholar
  45. Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Science, 67(1), 251–264.CrossRefGoogle Scholar
  46. Kobal, M., Bertoncelj, I., Pirotti, F., Dakskobler, I., & Kutnar, L. (2015). Using LiDAR data to analyse Sinkhole characteristics relevant for understory vegetation under forest cover-case study of a high Karst Area in the Dinaric Mountains. PLoS ONE, 10(3), e0122070. doi: 10.1371/journal.pone.0122070 CrossRefGoogle Scholar
  47. Kovač, B., & Žalik, B. (2010). Visualization of LiDAR datasets using point-based rendering technique. Computers & Geosciences, 36(11), 1443–1450.CrossRefGoogle Scholar
  48. Kritikos, T., & Davies, T. (2014). Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: application to western Southern Alps of New Zealand. Landslides, 15, 1–25.Google Scholar
  49. Lee, M. L., Ng, K. Y., Huang, Y. F., & Li, W. C. (2014). Rainfall-induced landslides in Hulu Kelang area, Malaysia. Natural Hazards, 70(1), 353–375.CrossRefGoogle Scholar
  50. Leone, F., Asté, J., & Leroi, E. (1996). Vulnerability assessment of elements exposed to mass-movement: Working toward a better risk perception. Landslides-Glissements de Terrain Balkema, Rotterdam, 7, 263–270.Google Scholar
  51. Ma, R. (2004). Building model reconstruction from LiDAR data and aerial photographs. The Ohio State University.Google Scholar
  52. Martha, T. R., van Westen, C. J., Kerle, N., Jetten, V., & Kumar, K. V. (2013). Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology, 184, 139–150.CrossRefGoogle Scholar
  53. Moonjun, R. (2007). Application of artificial neural network and decision tree in a GIS–based predictive soil mapping for landslide vulnerability study: A case study of Hoi Num Rin sub–Watershed, Thailand, ITC. Enschede, 104, 16–32.Google Scholar
  54. Moreiras, S. M. (2015). Landslides as climate indicators in Argentinean Central Andes (32° S). In Engineering geology for society and territory (Vol. 1, pp. 443–447).Google Scholar
  55. Muhammad, R. F. (2010). The geomorphology and origin of Gua Tempurung, Perak, West Malaysia. Bulletin of the Geological Society of Malaysia, 56, 127–132.Google Scholar
  56. Murillo-García, F., Rossi, M., Fiorucci, F., & Alcántara-Ayala, I. (2015). Population Landslide vulnerability evaluation: The case of the indigenous population of Pahuatlán-Puebla, Mexico. In Engineering geology for society and territory (Vol. 2, pp. 1793–1797).Google Scholar
  57. Muthukumar, M. (2013). GIS based geosystem response modelling for landslide vulnerability mapping parts of Nilgiris, South India. Disaster Advances, 6(7), 58–66.Google Scholar
  58. Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11–20.CrossRefGoogle Scholar
  59. Ohlmacher, G. C., & Davis, J. C. (2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69(3), 331–343.CrossRefGoogle Scholar
  60. Opolot, E. (2013). Application of remote sensing and geographical information systems in flood management: A review. Research Journal of Applied Sciences Engineering and Technology, 6, 1884–1894.Google Scholar
  61. Pan, W. S., Lu, Y. D., & Guo, J. Y. (2014). Risk assessment and management of geological disaster based on risk period analysis and GIS in Loess Areas. In Applied mechanics and materials (Vol. 675, pp. 1184–1191).Google Scholar
  62. Papathoma-Köhle, M., Zischg, A., Fuchs, S., Glade, T., & Keiler, M. (2015). Loss estimation for landslides in mountain areas–An integrated toolbox for vulnerability assessment and damage documentation. Environment Modelling and Software, 63, 156–169.CrossRefGoogle Scholar
  63. Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443–1464.CrossRefGoogle Scholar
  64. Pedrazzini, A., Humair, F., Jaboyedoff, M., & Tonini, M. (2015). Characterisation and spatial distribution of gravitational slope deformation in the Upper Rhone catchment (Western Swiss Alps). Landslides, 8, 1–19.Google Scholar
  65. Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2), 301–320.CrossRefGoogle Scholar
  66. Pradhan, B. (2011). Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environmental and Ecological Statistics, 18(3), 471–493.CrossRefGoogle Scholar
  67. Pradhan, B., Hagemann, U., Tehrany, M. S., & Prechtel, N. (2014). An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image. Computers & Geosciences, 63, 34–43.CrossRefGoogle Scholar
  68. Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 3(11), 1–15.Google Scholar
  69. Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037–1054.CrossRefGoogle Scholar
  70. Regmi, N. R., Giardino, J. R., McDonald, E. V., & Vitek, J. D. (2014). A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides, 11(2), 247–262.CrossRefGoogle Scholar
  71. Romeo, R. W., Mari, M., & Pappafico, G. (2013). A performance-based approach to landslide risk analysis and management. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide science and practice (pp. 91–95). Berlin: Springer.CrossRefGoogle Scholar
  72. Saito, H., Nakayama, D., & Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan. Geomorphology, 109(3), 108–121.CrossRefGoogle Scholar
  73. Sarkar, S., Kanungo, D. P., Patra, A., & Kumar, P. (2008). GIS based spatial data analysis for landslide susceptibility mapping. Journal of Mountain Science-England, 5(1), 52–62.CrossRefGoogle Scholar
  74. Sattenpalli, S., & Parkash, S. (2013). Landslides, land use systems and food security. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide science and practice (pp. 151–161). Berlin: Springer.CrossRefGoogle Scholar
  75. Shaharom, S., Huat, L. T., & Othman, M. A. (2014). Area based landslide hazard and risk assessment for Penang Island Malaysia. In K. Sassa, P. Canuti, & Y. Yin (Eds.), Landslide Science for a Safer Geoenvironment (pp. 513–519).Google Scholar
  76. Stoffel, M. (2010). Magnitude–frequency relationships of debris flows—A case study based on field surveys and tree-ring records. Geomorphology, 116(1), 67–76.CrossRefGoogle Scholar
  77. Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79.CrossRefGoogle Scholar
  78. Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.CrossRefGoogle Scholar
  79. Tierney, K. J., Lindell, M. K., & Perry, R. W. (2001). Facing the unexpected: Disaster preparedness and response in the United States. USA: Joseph Henry Press.Google Scholar
  80. Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E., & Gillet, H. (2015). Origin and architecture of a mass transport complex on the northwest slope of Little Bahama Bank (Bahamas): Relations between off-bank transport, bottom current sedimentation and submarine landslides. Sediment Geology, 317, 9–26.CrossRefGoogle Scholar
  81. Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118, 124–135.CrossRefGoogle Scholar
  82. Uzielli, M., Nadim, F., Lacasse, S., & Kaynia, A. M. (2008). A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology, 102(3), 251–256.CrossRefGoogle Scholar
  83. Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3), 112–131.CrossRefGoogle Scholar
  84. Varoonchotikul, P. (2003). Flood forecasting using artificial neural networks. The Netherlands: CRC Press.Google Scholar
  85. Wang, L. J., Sawada, K., & Moriguchi, S. (2013). Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers & Geosciences, 57, 81–92.CrossRefGoogle Scholar
  86. Winter, M., Smith, J., Fotopoulou, S., Pitilakis, K., Mavrouli, O., Corominas, J., et al. (2014). An expert judgement approach to determining the physical vulnerability of roads to debris flow. Bulletin of Engineering Geology and the Environment, 73(2), 291–305.CrossRefGoogle Scholar
  87. Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145, 70–80.CrossRefGoogle Scholar
  88. Xu, C., Xu, X., Yao, X., & Dai, F. (2014). Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides, 11(3), 441–461.CrossRefGoogle Scholar
  89. Yalcin, A., Reis, S., Aydinoglu, A., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274–287.CrossRefGoogle Scholar
  90. Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3), 251–266.CrossRefGoogle Scholar
  91. Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers & Geosciences, 35(6), 1125–1138.CrossRefGoogle Scholar
  92. Yuan, R. M., Tang, C. L., & Deng, Q. H. (2015). Effect of the acceleration component normal to the sliding surface on earthquake-induced landslide triggering. Landslides, 12(2), 335–344.CrossRefGoogle Scholar
  93. Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the Jelapang Corridor of the North–South expressway in Malaysia using high resolution airborne LiDAR data. Arabian Journal of Geoscience, 8, 1–12.CrossRefGoogle Scholar
  94. Zare, M., Pourghasemi, H. R., Vafakhah, M., & Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geoscience, 6(8), 2873–2888.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations