Advertisement

Performance Evaluation and Sensitivity Analysis of Expert-Based, Statistical, Machine Learning, and Hybrid Models for Producing Landslide Susceptibility Maps

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Seeni
  • Bahareh Kalantar
Chapter

Abstract

Landslides are active natural hazards in many areas of the world. Landslides damage and destroy man-made structures and landforms, causing many deaths and injuries every year.

Keywords

Normalize Difference Vegetation Index Partial Little Square Analytic Hierarchy Process Random Forest Landslide Susceptibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdi, H. (2003). Partial least square regression (PLS regression). Encyclopedia for Research Methods for the Social Sciences, 792–795.Google Scholar
  2. Aghdam, I. N., Varzandeh, M. H. M., & Pradhan, B. (2016). Landslide susceptibility mapping using an ensemble statistical index (Wi) and adaptive neuro-fuzzy inference system (ANFIS) model at Alborz Mountains (Iran). Environmental Earth Sciences, 75(7), 1–20.CrossRefGoogle Scholar
  3. Ahmed, B. (2015a). Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides, 12(6), 1077–1095.Google Scholar
  4. Ahmed, B. (2015b). Landslide susceptibility modelling applying user-defined weighting and data-driven statistical techniques in Cox’s Bazar Municipality, Bangladesh. Natural Hazards, 79(3), 1707–1737.Google Scholar
  5. Althuwaynee, O. F., Pradhan, B., & Lee, S. (2016). A novel integrated model for assessing landslide susceptibility mapping using CHAID and AHP pair-wise comparison. International Journal of Remote Sensing, 37(5), 1190–1209.CrossRefGoogle Scholar
  6. Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014a). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36.Google Scholar
  7. Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014b). A novel ensemble decision tree-based CHi-squared Automatic Interaction Detection (CHAID) and multivariate logistic regression models in landslide susceptibility mapping. Landslides, 11(6), 1063–1078.Google Scholar
  8. Ayalew, L., Yamagishi, H., Marui, H., & Kanno, T. (2005). Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81, 432–445.CrossRefGoogle Scholar
  9. Baeza, C., Lantada, N., & Moya, J. (2010a). Validation and evaluation of two multivariate statistical models for predictive shallow landslide susceptibility mapping of the Eastern Pyrenees (Spain). Environmental Earth Sciences, 61(3), 507–523.Google Scholar
  10. Baeza, C., Lantada, N., & Moya, J. (2010b). Influence of sample and terrain unit on landslide susceptibility assessment at La Pobla de Lillet, Eastern Pyrenees, Spain. Environmental Earth Sciences, 60(1), 155–167.Google Scholar
  11. Bai, S. B., Lü, G., Wang, J., Zhou, P., & Ding, L. (2010). GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environmental Earth Sciences, 62(1), 139–149.CrossRefGoogle Scholar
  12. Biau, G., Devroye, L., & Lugosi, G. (2008). Consistency of random forests and other averaging classifiers. Journal of Machine Learning Research, 9(Sep), 2015–2033.Google Scholar
  13. Bijukchhen, S. M., Kayastha, P., & Dhital, M. R. (2013). A comparative evaluation of heuristic and bivariate statistical modelling for landslide susceptibility mappings in Ghurmi–Dhad Khola, east Nepal. Arabian Journal of Geosciences, 6(8), 2727–2743.Google Scholar
  14. Bonham-Carter, G. F. (1994). Geographic information systems for geoscientists-modeling with GIS. Computer Methods in the Geoscientists, 13, 398.Google Scholar
  15. Bourenane, H., Bouhadad, Y., Guettouche, M. S., & Braham, M. (2015). GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bulletin of Engineering Geology and the Environment, 74(2), 337–355.Google Scholar
  16. Breiman, L. (2001). Random forests. Machine learning, 45(1), 5–32.Google Scholar
  17. Budimir, M. E. A., Atkinson, P. M., & Lewis, H. G. (2015). A systematic review of landslide probability mapping using logistic regression. Landslides, 12(3), 419–436.Google Scholar
  18. Bui, D. T., Lofman, O., Revhaug, I., & Dick, O. (2011). Landslide susceptibility analysis in the Hoa Binh province of Vietnam using statistical index and logistic regression. Natural hazards, 59(3), 1413.Google Scholar
  19. Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012). Application of support vector machines in landslide susceptibility assessment for the Hoa Binh province (Vietnam) with kernel functions analysis [Doctoral dissertation, International Environmental Modelling and Software Society (iEMSs)].Google Scholar
  20. Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378.Google Scholar
  21. Calle, M. L., & Urrea, V. (2011). Letter to the editor: stability of random forest importance measures. Briefings in bioinformatics, 12(1), 86–89.Google Scholar
  22. Calle, M. L., Urrea, V., Malats, N., & Van Steen, K. (2010). mbmdr: an R package for exploring gene–gene interactions associated with binary or quantitative traits. Bioinformatics, 26(17), 2198–2199.Google Scholar
  23. Chen, W., Li, W., Chai, H., Hou, E., Li, X., & Ding, X. (2016). GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environmental Earth Sciences, 75(1), 63.Google Scholar
  24. Chung, C. J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472.Google Scholar
  25. Conforti, M., Muto, F., Rago, V., & Critelli, S. (2014a). Landslide inventory map of north-eastern Calabria (South Italy). Journal of maps, 10(1), 90–102.Google Scholar
  26. Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014b). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236–250.Google Scholar
  27. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.Google Scholar
  28. Demir, G., Aytekin, M., & Akgun, A. (2015). Landslide susceptibility mapping by frequency ratio and logistic regression methods: an example from Niksar–Resadiye (Tokat, Turkey). Arabian Journal of Geosciences, 8(3), 1801–1812.Google Scholar
  29. Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165.CrossRefGoogle Scholar
  30. Ercanoglu, M., Gokceoglu, C., & Van Asch, T. W. (2004). Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Natural Hazards, 32(1), 1–23.CrossRefGoogle Scholar
  31. Ercanoglu, M., Kasmer, O., & Temiz, N. (2008). Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping. Bulletin of Engineering Geology and the Environment, 67(4), 565–578.Google Scholar
  32. Erener, A., Mutlu, A., & Düzgün, H. S. (2016). A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Engineering Geology, 203, 45–55.Google Scholar
  33. Evans, J. S., & Hudak, A. T. (2007). A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 1029–1038.CrossRefGoogle Scholar
  34. Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F., & Reichenbach, P. (2008). Comparing landslide inventory maps. Geomorphology, 94(3), 268–289.Google Scholar
  35. García-Rodríguez, M. J., Malpica, J. A., Benito, B., & Díaz, M. (2008). Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology, 95(3), 172–191.Google Scholar
  36. Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: a tutorial. Analytica chimica acta, 185, 1–17.Google Scholar
  37. Ghosh, S., Carranza, E. J. M., van Westen, C. J., Jetten, V. G., & Bhattacharya, D. N. (2011). Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India). Geomorphology, 131(1), 35–56.Google Scholar
  38. Gorsevski, P. V., Gessler, P. E., Boll, J., Elliot, W. J., & Foltz, R. B. (2006a). Spatially and temporally distributed modeling of landslide susceptibility.Geomorphology, 80(3), 178–198.Google Scholar
  39. Gorsevski, P. V., Gessler, P. E., Foltz, R. B., & Elliot, W. J. (2006b). Spatial prediction of landslide hazard using logistic regression and ROC analysis.Transactions in GIS, 10(3), 395–415.Google Scholar
  40. Gorsevski, P. V., & Jankowski, P. (2010). An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter. Computers & Geosciences, 36(8), 1005–1020.CrossRefGoogle Scholar
  41. Gorsevski, P. V., Jankowski, P., & Gessler, P. E. (2006). Heuristic approach for mapping landslide hazard integrating fuzzy logic with analytic hierarchy process. Control and Cybernetics, 35(1), 121.Google Scholar
  42. Hasekioğulları, G. D., & Ercanoglu, M. (2012). A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey). Natural Hazards, 63(2), 1157–1179.CrossRefGoogle Scholar
  43. Haugerud, R. A., & Harding, D. J. (2001). Some algorithms for virtual deforestation (VDF) of LIDAR topographic survey data. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/W4), 211–218.Google Scholar
  44. Hong, H., Pradhan, B., Jebur, M. N., Bui, D. T., Xu, C., & Akgun, A. (2016). Spatial prediction of landslide hazard at the Luxi area (China) using support vector machines. Environmental Earth Sciences, 75(1), 40.Google Scholar
  45. Hühnerbach, V., & Masson, D. G. (2004). Landslides in the North Atlantic and its adjacent seas: an analysis of their morphology, setting and behaviour. Marine Geology, 213(1), 343–362.Google Scholar
  46. Intarawichian, N., & Dasananda, S. (2011). Frequency ratio model based landslide susceptibility mapping in lower Mae Chaem watershed, Northern Thailand. Environmental Earth Sciences, 64(8), 2271–2285.Google Scholar
  47. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.Google Scholar
  48. Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2015a). An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Natural Hazards, 76(1), 471–496.Google Scholar
  49. Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2015b). Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Engineering Geology, 192, 101–112.Google Scholar
  50. Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398–408.CrossRefGoogle Scholar
  51. Kelarestaghi, A., & Ahmadi, H. (2009). Landslide susceptibility analysis with a bivariate approach and GIS in Northern Iran. Arabian Journal of Geosciences, 2(1), 95–101.Google Scholar
  52. Kilincci, O., & Onal, S. A. (2011). Fuzzy AHP approach for supplier selection in a washing machine company. Expert systems with Applications, 38(8), 9656–9664‏.CrossRefGoogle Scholar
  53. Lee, S. (2005). Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26(7), 1477–1491.CrossRefGoogle Scholar
  54. Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.Google Scholar
  55. Lee, S., & Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47(7), 982–990.Google Scholar
  56. Lee, S., Choi, J., & Min, K. (2002). Landslide susceptibility analysis and verification using the Bayesian probability model. Environmental Geology, 43(1–2), 120–131.CrossRefGoogle Scholar
  57. Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R news, 2(3), 18–22.Google Scholar
  58. Lombardo, L., Cama, M., Conoscenti, C., Märker, M., & Rotigliano, E. (2015). Binary logistic regression versus stochastic gradient boosted decision trees in assessing landslide susceptibility for multiple-occurring landslide events: Application to the 2009 storm event in Messina (Sicily, southern Italy). Natural Hazards, 79(3), 1621–1648.CrossRefGoogle Scholar
  59. MacFarland, T. W., & Yates, J. M. (2016). Spearman’s rank-difference coefficient of correlation. Introduction to nonparametric statistics for the biological sciences using R (pp. 249–297). Berlin: Springer International Publishing.CrossRefGoogle Scholar
  60. Magliulo, P., Di Lisio, A., & Russo, F. (2009). Comparison of GIS-based methodologies for the landslide susceptibility assessment. Geoinformatica, 13(3), 253–265.Google Scholar
  61. Mancini, F., Ceppi, C., & Ritrovato, G. (2010). GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy. Natural Hazards and Earth System Sciences, 10(9), 1851.Google Scholar
  62. Marjanović, M., Kovačević, M., Bajat, B., & Voženílek, V. (2011). Landslide susceptibility assessment using SVM machine learning algorithm.Engineering Geology, 123(3), 225–234.Google Scholar
  63. Mathew, R., Karp, C. M., Beaudoin, B., Vuong, N., Chen, G., Chen, H. Y., & DiPaola, R. S. (2009). Autophagy suppresses tumorigenesis through elimination of p62. Cell, 137(6), 1062–1075.Google Scholar
  64. McLachlan, G. (2004). Discriminant analysis and statistical pattern recognition (Vol. 544). Hoboken: John Wiley & Sons.Google Scholar
  65. Meng, Q., Miao, F., Zhen, J., Wang, X., Wang, A., Peng, Y., et al. (2015). GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy process, and combined fuzzy and support vector machine methods: A case study from Wolong Giant Panda Natural Reserve, China. Bulletin of Engineering Geology and the Environment, 75, 1–22.Google Scholar
  66. Mohamed Shaluf, I., & Ahmadun, F. L. R. (2006). Disaster types in Malaysia: An overview. Disaster Prevention and Management: An International Journal, 15(2), 286–298.CrossRefGoogle Scholar
  67. Moosavi, V., & Niazi, Y. (2016). Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping. Landslides, 13(1), 97–114.Google Scholar
  68. Mousavi, S. Z., Kavian, A., Soleimani, K., Mousavi, S. R., & Shirzadi, A. (2011). GIS-based spatial prediction of landslide susceptibility using logistic regression model. Geomatics, Natural Hazards and Risk, 2(1), 33–50.Google Scholar
  69. Murillo-García, F. G., Alcántara-Ayala, I., Ardizzone, F., Cardinali, M., Fiourucci, F., & Guzzetti, F. (2015). Satellite stereoscopic pair images of very high resolution: a step forward for the development of landslide inventories. Landslides, 12(2), 277–291.Google Scholar
  70. Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11–20.Google Scholar
  71. Neuhäuser, B., & Terhorst, B. (2007). Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology, 86(1), 12–24.CrossRefGoogle Scholar
  72. Oztekin, B., & Topal, T. (2005). GIS-based detachment susceptibility analyses of a cut slope in limestone, Ankara—Turkey. Environmental Geology, 49, 124–132.CrossRefGoogle Scholar
  73. Pachauri, A. K., & Pant, M. (1992). Landslide hazard mapping based on geological attributes. Engineering geology, 32(1-2), 81–100.Google Scholar
  74. Park, I., & Lee, S. (2014). Spatial prediction of landslide susceptibility using a decision tree approach: a case study of the Pyeongchang area, Korea. International Journal of Remote Sensing, 35(16), 6089–6112.Google Scholar
  75. Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443–1464.CrossRefGoogle Scholar
  76. Patriche, C. V., Pirnau, R., Grozavu, A., & Rosca, B. (2016). A comparative analysis of binary logistic regression and analytical hierarchy process for landslide susceptibility assessment in the Dobrov River Basin, Romania. Pedosphere, 26(3), 335–350.CrossRefGoogle Scholar
  77. Pham, B. T., Bui, D. T., Pham, H. V., Le, H. Q., Prakash, I., & Dholakia, M. B. (2016a). Landslide hazard assessment using random subspace fuzzy rules based classifier ensemble and probability analysis of rainfall data: a case study at Mu Cang Chai District, Yen Bai Province (Viet Nam). Journal of the Indian Society of Remote Sensing, 1–11.Google Scholar
  78. Pham, B. T., Pradhan, B., Bui, D. T., Prakash, I., & Dholakia, M. B. (2016b). A comparative study of different machine learning methods for landslide susceptibility assessment: a case study of Uttarakhand area (India). Environmental Modelling & Software, 84, 240–250.Google Scholar
  79. Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013a). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349–369.Google Scholar
  80. Pourghasemi, H. R., Moradi, H. R., & Aghda, S. F. (2013b). Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazards, 69(1), 749–779.Google Scholar
  81. Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., & Moradi, H. R. (2013c). Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences, 6(7), 2351–2365.Google Scholar
  82. Pourghasemi, H. R., Mohammady, M., & Pradhan, B. (2012a). Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97, 71–84.Google Scholar
  83. Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012b). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural hazards, 63(2), 965–996.Google Scholar
  84. Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., & Moezzi, K. D. (2012c). Landslide susceptibility mapping using a spatial multi criteria evaluation model at Haraz Watershed, Iran. In Terrigenous mass movements (pp. 23–49). Springer Berlin Heidelberg.Google Scholar
  85. Pradhan, B. (2010a). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2), 301–320.Google Scholar
  86. Pradhan, B. (2010b). Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Advances in space research, 45(10), 1244–1256.Google Scholar
  87. Pradhan, B. (2011). Manifestation of an advanced fuzzy logic model coupled with Geoinformation techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environmental Ecology Statistics, 18(3), 471–493.CrossRefGoogle Scholar
  88. Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.Google Scholar
  89. Pradhan, A. M. S., & Kim, Y. T. (2014). Relative effect method of landslide susceptibility zonation in weathered granite soil: a case study in Deokjeok-ri Creek, South Korea. Natural hazards, 72(2), 1189–1217.Google Scholar
  90. Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037–1054.CrossRefGoogle Scholar
  91. Pradhan, B., Sezer, E. A., Gokceoglu, C., & Buchroithner, M. F. (2010). Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4164–4177.CrossRefGoogle Scholar
  92. Raman, R., & Punia, M. (2012). The application of GIS-based bivariate statistical methods for landslide hazards assessment in the upper Tons river valley, Western Himalaya, India. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 6(3), 145–161.Google Scholar
  93. Roodposhti, M. S., Rahimi, S., & Beglou, M. J. (2014). PROMETHEE II and fuzzy AHP: an enhanced GIS-based landslide susceptibility mapping. Natural hazards, 73(1), 77–95.Google Scholar
  94. Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234–281.CrossRefGoogle Scholar
  95. Saaty, T. L., & Vargas, G. L. (2001). Models, methods, concepts, and applications of the analytic hierarchy process. Boston: Kluwer Academic Publisher.CrossRefGoogle Scholar
  96. Sarkar, S., & Kanungo, D. P. (2004). An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Engineering & Remote Sensing, 70(5), 617-625.Google Scholar
  97. Sangchini, E. K., Emami, S. N., Tahmasebipour, N., Pourghasemi, H. R., Naghibi, S. A., Arami, S. A., et al. (2016). Assessment and comparison of combined bivariate and AHP models with logistic regression for landslide susceptibility mapping in the Chaharmahal-e-Bakhtiari Province, Iran. Arabian Journal of Geosciences, 9(3), 1.CrossRefGoogle Scholar
  98. Santacana, N., Baeza, B., Corominas, J., De Paz, A., & Marturiá, J. (2003). A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain). Natural hazards, 30(3), 281–295.Google Scholar
  99. Schicker, R., & Moon, V. (2012). Comparison of bivariate and multivariate statistical approaches in landslide susceptibility mapping at a regional scale. Geomorphology, 161, 40–57.CrossRefGoogle Scholar
  100. Schleier, M., Bi, R., Rohn, J., Ehret, D., & Xiang, W. (2014). Robust landslide susceptibility analysis by combination of frequency ratio, heuristic GIS-methods and ground truth evaluation for a mountainous study area with poor data availability in the Three Gorges Reservoir area, PR China. Environmental earth sciences, 71(7), 3007–3023.Google Scholar
  101. Setchi, R., & Anuar, F. M. (2016). Multi-faceted assessment of trademark similarity. Expert Systems with Applications, 65, 16–27.Google Scholar
  102. Sezer, E. A., Nefeslioglu, H. A., & Osna, T. (2017). An expert-based landslide susceptibility mapping (LSM) module developed for Netcad Architect Software. Computers & Geosciences, 98, 26–37.Google Scholar
  103. Shahabi, H., Ahmad, B. B., & Khezri, S. (2013). Evaluation and comparison of bivariate and multivariate statistical methods for landslide susceptibility mapping (case study: Zab basin). Arabian Journal of Geosciences, 6(10), 3885–3907.Google Scholar
  104. Stumpf, A., & Kerle, N. (2011). Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment, 115(10), 2564–2577.Google Scholar
  105. Süzen, M. L., & Doyuran, V. (2004a). A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate.Environmental geology, 45(5), 665–679.Google Scholar
  106. Süzen, M. L., & Doyuran, V. (2004b). Data driven bivariate landslide susceptibility assessment using geographical information systems: a method and application to Asarsuyu catchment, Turkey. Engineering Geology, 71(3), 303–321.Google Scholar
  107. Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118, 124–135.Google Scholar
  108. Van Den Eeckhaut, M., Marre, A., & Poesen, J. (2010). Comparison of two landslide susceptibility assessments in the Champagne–Ardenne region (France). Geomorphology, 115(1), 141–155.Google Scholar
  109. van Westen, C. J. (1997). Statistical landslide hazard analysis. ILWIS 2.1 for windows application guide (pp. 73–84). ITC Publication: Enschede.Google Scholar
  110. Vapnik, V. (1995). The nature of statistical learning. New York: Springer.CrossRefGoogle Scholar
  111. Verachtert, E., Van Den Eeckhaut, M., Poesen, J., Govers, G., & Deckers, J. (2011). Prediction of spatial patterns of collapsed pipes in loess-derived soils in a temperate humid climate using logistic regression. Geomorphology,130(3), 185–196.Google Scholar
  112. Wang, L. J., Guo, M., Sawada, K., Lin, J., & Zhang, J. (2016). A comparative study of landslide susceptibility maps using logistic regression, frequency ratio, decision tree, weights of evidence and artificial neural network. Geosciences Journal, 20(1), 117–136.CrossRefGoogle Scholar
  113. Wu, X., Niu, R., Ren, F., & Peng, L. (2013). Landslide susceptibility mapping using rough sets and back-propagation neural networks in the Three Gorges, China. Environmental earth sciences, 70(3), 1307–1318.Google Scholar
  114. Wu, X., Ren, F., & Niu, R. (2014). Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environmental earth sciences, 71(11), 4725–4738.Google Scholar
  115. Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145, 70–80.CrossRefGoogle Scholar
  116. Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72(1), 1–12.CrossRefGoogle Scholar
  117. Yalcin, A., Reis, S., Aydinoglu, A. C., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274–287.CrossRefGoogle Scholar
  118. Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Computers & Geosciences, 35(6), 1125–1138.Google Scholar
  119. Youssef, A.M., Pradhan, B., Maerz, N.H., (2014) Debris flow impact assessment caused by 14 April 2012 rainfall along the Al-Hada Highway, Kingdom of Saudi Arabia using high resolution satellite imagery. Arabian Journal of Geosciences, 7(7), 2591–2601. http://dx.doi.org/10.1007/s12517-013-0935-0
  120. Youssef, A. M., Al-Kathery, M., & Pradhan, B. (2015). Landslide susceptibility mapping at Al-Hasher area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosciences Journal, 19(1), 113–134.Google Scholar
  121. Youssef, A. M., Pourghasemi, H. R., Pourtaghi, Z. S., & Al-Katheeri, M. M. (2016a). Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13(5), 839–856.Google Scholar
  122. Youssef, A. M., Pourghasemi, H. R., El-Haddad, B. A., & Dhahry, B. K. (2016b). Landslide susceptibility maps using different probabilistic and bivariate statistical models and comparison of their performance at Wadi Itwad Basin, Asir Region, Saudi Arabia. Bulletin of Engineering Geology and the Environment, 75(1), 63–87.Google Scholar
  123. Youssef, A. M., Pradhan, B., Jebur, M. N., & El-Harbi, H. M. (2015). Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa area, Saudi Arabia. Environmental Earth Sciences, 73(7), 3745–3761.CrossRefGoogle Scholar
  124. Zhou, J. W., Cui, P., & Hao, M. H. (2016). Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China. Landslides, 13(1), 39–54.Google Scholar
  125. Zhu, A. X., Wang, R., Qiao, J., Qin, C. Z., Chen, Y., Liu, J., & Zhu, T. (2014). An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology, 214, 128–138.Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Biswajeet Pradhan
    • 1
    Email author
  • Maher Ibrahim Seeni
    • 1
  • Bahareh Kalantar
    • 1
  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations