Advertisement

Ensemble Disagreement Active Learning for Spatial Prediction of Shallow Landslide

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Sameen
  • Bahareh Kalantar
Chapter

Abstract

In Malaysia, landslides are considered as the most frequent and devastating natural disaster that cause human life and property losses. The spatial prediction of landslides is the basic step required for hazard and risk assessments. Spatial prediction methods of landslides are established and documented in the literature. However, several research directions on this topic need to be developed and explored in depth. The current improvement in computer technology and laser scanning systems provide improved data processing capabilities and topographic datasets, as well as new trends in landslide modeling and methods that can deal with such advanced technologies and datasets.

Keywords

Support Vector Machine Active Learning Landslide Susceptibility Support Vector Machine Model Landslide Occurrence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93–106.CrossRefGoogle Scholar
  2. Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1), 15–31.CrossRefGoogle Scholar
  3. Bai, S. B., Wang, J., Lü, G. N., Zhou, P. G., Hou, S. S., & Xu, S. N. (2010). GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three Gorges area, China. Geomorphology, 115(1), 23–31.CrossRefGoogle Scholar
  4. Ballabio, C., & Sterlacchini, S. (2012). Support vector machines for landslide susceptibility mapping: the Staffora River Basin case study, Italy. Mathematical Geosciences, 44(1), 47–70.CrossRefGoogle Scholar
  5. Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Journal, 24(1), 43–69.CrossRefGoogle Scholar
  6. Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012). Application of support vector machines in landslide susceptibility assessment for the Hoa Binh province (Vietnam) with kernel functions analysis (Doctoral dissertation, International Environmental Modelling and Software Society (iEMSs)).Google Scholar
  7. Chung, C. J. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472.CrossRefGoogle Scholar
  8. Colkesen, I., Sahin, E. K., & Kavzoglu, T. (2016). Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression. Journal of African Earth Sciences, 118, 53–64.CrossRefGoogle Scholar
  9. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.Google Scholar
  10. Das, I., Sahoo, S., van Westen, C., Stein, A., & Hack, R. (2010). Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114(4), 627–637.CrossRefGoogle Scholar
  11. Demir, B., & Bruzzone, L. (2015). A novel active learning method in relevance feedback for content-based remote sensing image retrieval. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2323–2334.CrossRefGoogle Scholar
  12. Di, W., & Crawford, M. M. (2012). View generation for multiview maximum disagreement based active learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1942–1954.CrossRefGoogle Scholar
  13. Evans, J. S., & Hudak, A. T. (2007). A multiscale curvature algorithm for classifying discrete return LiDAR in forested environments. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 1029–1038.CrossRefGoogle Scholar
  14. Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics. Journal of the American Statistical Association, 87(417), 178–183.CrossRefGoogle Scholar
  15. Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112(1), 42–66.CrossRefGoogle Scholar
  16. Hong, H., Pradhan, B., Jebur, M. N., Bui, D. T., Xu, C., & Akgun, A. (2016). Spatial prediction of landslide hazard at the luxi area (china) using support vector machines. Environmental Earth Sciences, 75(1), 1–14.CrossRefGoogle Scholar
  17. Hyun-Joo, O., Saro, L., & Soedradjat, G. M. (2010). Quantitative landslide susceptibility mapping at Pemalang area. Indonesia. Environmental Earth Sciences, 60(6), 1317–1328.CrossRefGoogle Scholar
  18. Intarawichian, N., & Dasananda, S. (2011). Frequency ratio model based landslide susceptibility mapping in lower Mae Chaem watershed, Northern Thailand. Environmental Earth Sciences, 64(8), 2271–2285.CrossRefGoogle Scholar
  19. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.CrossRefGoogle Scholar
  20. Körner, C., & Wrobel, S. (2006). Multi-class ensemble-based active learning. In European conference on machine learning (pp. 687–694). Berlin, Heidelberg: Springer.Google Scholar
  21. Lateh, H., Jefriz, Muhiyuddin, W. M., Taib, B., & Khan, Y. A. (2010). Monitoring of hill-slope movement due to rainfall at Gunung Pass of Cameron Highland district of Peninsular Malaysia. International Journal of Earth Sciences and Engineering, 3, 6–12.Google Scholar
  22. Latif, Z. A., Aman, S. N. A., & Pradhan, B. (2012, March). Landslide susceptibility mapping using LiDAR derived factors and frequency ratio model: Ulu Klang area, Malaysia. In 2012 IEEE 8th International Colloquium on Signal Processing and its Applications (CSPA) (pp. 378–382).Google Scholar
  23. Lee, S., & Sambath, T. (2006). Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50(6), 847–855.CrossRefGoogle Scholar
  24. Liao, X., Xue, Y., & Carin, L. (2005, August). Logistic regression with an auxiliary data source. In Proceedings of the 22nd international conference on Machine learning (pp. 505-512). USA: ACM.Google Scholar
  25. Marjanović, M., Kovačević, M., Bajat, B., & Voženílek, V. (2011). Landslide susceptibility assessment using SVM machine learning algorithm. Engineering Geology, 123(3), 225–234.CrossRefGoogle Scholar
  26. Mathew, J., Jha, V. K., & Rawat, G. S. (2009). Landslide susceptibility zonation mapping and its validation in part of Garhwal Lesser Himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides, 6(1), 17–26.CrossRefGoogle Scholar
  27. Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: A comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. Journal of Asian Earth Sciences, 61, 221–236.CrossRefGoogle Scholar
  28. Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30.CrossRefGoogle Scholar
  29. Ozdemir, A. (2016). Sinkhole susceptibility mapping using logistic regression in Karapınar (Konya, Turkey). Bulletin of Engineering Geology and the Environment, 75(2), 681–707.CrossRefGoogle Scholar
  30. Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.CrossRefGoogle Scholar
  31. Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., & Emery, W. J. (2014). SVM active learning approach for image classification using spatial information. IEEE Transactions on Geoscience and Remote Sensing, 52(4), 2217–2233.CrossRefGoogle Scholar
  32. Peng, L., Niu, R., Huang, B., Wu, X., Zhao, Y., & Ye, R. (2014). Landslide susceptibility mapping based on rough set theory and support vector machines: A case of the Three Gorges area, China. Geomorphology, 204, 287–301.CrossRefGoogle Scholar
  33. Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349–369.CrossRefGoogle Scholar
  34. Pradhan, A. M. S., & Kim, Y. T. (2014). Relative effect method of landslide susceptibility zonation in weathered granite soil: A case study in Deokjeokri Creek, South Korea. Natural hazards, 72(2), 1189–1217.CrossRefGoogle Scholar
  35. Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2), 301–320.CrossRefGoogle Scholar
  36. Pradhan, B., & Lee, S. (2010). Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7(1), 13–30.CrossRefGoogle Scholar
  37. Pradhan, B., Sezer, E. A., Gokceoglu, C., & Buchroithner, M. F. (2010). Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4164–4177.CrossRefGoogle Scholar
  38. Seung, H. S., Opper, M., & Sompolinsky, H. (1992). Query by committee. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 287–294). USA: ACM. Google Scholar
  39. Tazik, E., Jahantab, Z., Bakhtiari, M., Rezaei, A., & Alavipanah, S. K. (2014). Landslide susceptibility mapping by combining the three methods fuzzy logic, frequency ratio and analytical hierarchy process in Dozain basin. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(2), 267.CrossRefGoogle Scholar
  40. Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes models. Mathematical Problems in Engineering, 2012.Google Scholar
  41. Tuia, D., Ratle, F., Pacifici, F., Kanevski, M. F., & Emery, W. J. (2009). Active learning methods for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2218–2232.CrossRefGoogle Scholar
  42. Vapnik, V. (1995). The nature of statistical learning. New York: Springer.CrossRefGoogle Scholar
  43. Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012a). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145, 70–80.CrossRefGoogle Scholar
  44. Xu, C., Xu, X., Dai, F., & Saraf, A. K. (2012b). Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Computers & Geosciences, 46, 317–329.CrossRefGoogle Scholar
  45. Yang, B., Xu, W., & Yao, W. (2014). Extracting buildings from airborne laser scanning point clouds using a marked point process. GIScience & Remote Sensing, 51(5), 555–574.CrossRefGoogle Scholar
  46. Yao, X., Tham, L. G., & Dai, F. C. (2008). Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong. China. Geomorphology, 101(4), 572–582.CrossRefGoogle Scholar
  47. Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3), 251–266.CrossRefGoogle Scholar
  48. Zare, M., Pourghasemi, H. R., Vafakhah, M., & Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geosciences, 6(8), 2873–2888.CrossRefGoogle Scholar
  49. Zhu, X., Zhang, S., Jin, Z., Zhang, Z., & Xu, Z. (2011). Missing value estimation for mixed-attribute data sets. IEEE Transactions on Knowledge and Data Engineering, 23(1), 110–121.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Biswajeet Pradhan
    • 1
    Email author
  • Maher Ibrahim Sameen
    • 1
  • Bahareh Kalantar
    • 1
  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations