Skip to main content

Laser Scanning Systems in Landslide Studies

  • Chapter
  • First Online:
Book cover Laser Scanning Applications in Landslide Assessment

Abstract

Remote sensing techniques have undergone rapid and significant improvements in the last few decades. The capability of new and enhanced remote sensing techniques to acquire 3D spatial data and very high-resolution terrain contours allows advanced and effective investigations of landslide phenomena. Data from multi-sensors supplemented with airborne- and ground-based data collection techniques

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., & Lato, M. J. (2014). Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39(1), 80–97.

    Google Scholar 

  • Akgun, A., & Erkan, O. (2016). Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: In an artificial reservoir area at Northern Turkey. Arabian Journal of Geosciences, 9(2), 1–15.

    Article  Google Scholar 

  • Al-Durgham, M., Fotopoulos, G., & Glennie, C. (2010). On the accuracy of Li-DAR derived digital surface models. Gravity, geoid and earth observation (pp. 689–695). Berlin: Springer.

    Chapter  Google Scholar 

  • Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., & Reichenbach, P. (2007). Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR. Natural Hazards and Earth System Science, 7(6), 637–650.

    Article  Google Scholar 

  • Axelsson, P. (2000). DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and Remote Sensing, 33(B4/1; PART 4), 111–118.

    Google Scholar 

  • Ayalew, L., Yamagishi, H., & Ugawa, N. (2004). Landslide susceptibility map-ping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1(1), 73–81.

    Article  Google Scholar 

  • Baltsavias, E. P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 199–214.

    Article  Google Scholar 

  • Barendse, P. E., Brian, M., & Machan, G. (2009). In-place microelectromechanical system inclinometer strings: Evaluation of an evolving technology. In Transportation Research Board 88th Annual Meeting (No. 09-2118).

    Google Scholar 

  • Baumann, V., Wick, E., Horton, P., & Jaboyedoff, M. (2011, October). Debris flow susceptibility mapping at a regional scale along the National Road N7, Argentina. In Proceedings of the 14th Pan-American conference on soil mechanics and geotechnical engineering (pp. 2–6).

    Google Scholar 

  • Bromhead, E., Curtis, R., & Schofield, W. (1988). Observation and adjustment of a geodetic survey network for measurement of landslide movement. In C. Bonnard & A. A. Balkema (Eds.), Land-slides-Glissements De Terrains, Proceedings of 5th International Symposium on Landslides (pp. 383–386). The Netherlands: Rotterdam.

    Google Scholar 

  • Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378.

    Article  Google Scholar 

  • Burghaus, S., Bell, R., & Kuhlmann, H. (2009). Improvement of a terrestric network for movement analysis of a complex landslide. In Presentation at FIG Conference, Eilat, Israel.

    Google Scholar 

  • Burrough, P. A., McDonnell, R. A., McDonnell, R., & Lloyd, C. D. (2015). Principles of geographical information systems. Oxford: Oxford University Press.

    Google Scholar 

  • Canuti, P., Casagli, N., Catani, F., Falorni, G., & Farina, P. (2007). Integration of remote sensing techniques in different stages of landslide response. Progress in Landslide Science (pp. 251–260). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Chen, X. L., Liu, C. G., Chang, Z. F., & Zhou, Q. (2016). The relationship between the slope angle and the landslide size derived from limit equilibrium simulations. Geomorphology, 253, 547–550.

    Article  Google Scholar 

  • Chow, T. E., & Hodgson, M. E. (2009). Effects of LiDAR post-spacing and DEM resolution to mean slope estimation. International Journal of Geographical Information Science, 23(10), 1277–1295.

    Article  Google Scholar 

  • Conforti, M., Aucelli, P. P., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazards, 56(3), 881–898.

    Article  Google Scholar 

  • Daehne, A., & Corsini, A. (2013). Kinematics of active earthflows revealed by digital image correlation and DEM subtraction techniques applied to multi-temporal LiDAR data. Earth Surf Process Landforms, 38, 640–654.

    Article  Google Scholar 

  • Dallaire, G. (1974). Electronic distance measuring revolution well underway. Civil Engineering, 44(10), 66–71.

    Google Scholar 

  • De Blasio, F. V. (2011). Introduction to the physics of landslides: Lecture notes on the dynamics of mass wasting. Berlin: Springer Science & Business Media.

    Book  Google Scholar 

  • Derron, M. H., & Jaboyedoff, M. (2010). Preface “LiDAR and DEM techniques for landslides monitoring and characterization”. Natural Hazards and Earth System Sciences, 10, 1877–1879.

    Article  Google Scholar 

  • Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165.

    Article  Google Scholar 

  • Dou, J., Yamagishi, H., Pourghasemi, H. R., Yunus, A. P., Song, X., Xu, Y., et al. (2015). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78(3), 1749–1776.

    Article  Google Scholar 

  • Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyer-sons, J., et al. (2007). Use of LiDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32(5), 754–769.

    Article  Google Scholar 

  • Fernandes, N. F., Guimarães, R. F., Gomes, R. A., Vieira, B. C., Montgomery, D. R., & Greenberg, H. (2004). Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling. CATENA, 55(2), 163–181.

    Article  Google Scholar 

  • Fernández, T., Jiménez-Perálvarez, J. D., Fernández, P., El Hamdouni, R., Cardenal, F. J., Delgado, J., et al. (2008) Automatic detection of landslide features with remote sensing techniques in the Betic Cordilleras (Granada, Southern Spain). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII. Part B8: 351–356. ISSN 1682–1750.

    Google Scholar 

  • Fornaciai, A., Bisson, M., Landi, P., Mazzarini, F., & Pareschi, M. T. (2010). A LiDAR survey of Stromboli volcano (Italy): Digital elevation model-based geomorphology and intensity analysis. International Journal of Remote Sensing, 31(12), 3177–3194.

    Article  Google Scholar 

  • Ghuffar, S., Székely, B., Roncat, A., & Pfeifer, N. (2013). Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data. Remote Sensing, 5(6), 2720–2745.

    Article  Google Scholar 

  • Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., & Dorsch, S. J. (2006). Analysis of LiDAR derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73, 131–148.

    Article  Google Scholar 

  • Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112, 42–66.

    Article  Google Scholar 

  • Habib, A. (2008). Accuracy, quality assurance and quality control of LiDAR data, Chap 9. Topographic laser ranging and scanning: Principles and processing (pp. 269–294). Boca Rotan: CRC Press, Taylor & Francis.

    Google Scholar 

  • Habib, A. F., Kersting, A. P., Shaker, A., & Yan, W. Y. (2011). Geometric calibration and radiometric correction of LiDAR data and their impact on the quality of derived products. Sensors, 11(9), 9069–9097.

    Article  Google Scholar 

  • Haneberg, W. C., Cole, W. F., & Kasali, G. (2009). High-resolution LiDAR-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bulletin of Engineering Geology and the Environment, 68, 263–276.

    Article  Google Scholar 

  • Hanson, G. E. (1999). U.S. Patent No. 5,872,354. Washington, DC: U.S. Patent and Trademark Office‏.

    Google Scholar 

  • Hervás, J., Barredo, J. I., Rosin, P. L., Pasuto, A., Mantovani, F., & Silvano, S. (2003). Monitoring landslides from optical remotely sensed imagery: The case history of Tessina landslide, Italy. Geomorphology, 54, 63–75.

    Article  Google Scholar 

  • Hungr, O., & Evans, S. G. (2004). The occurrence and classification of massive rock slope failure. Felsbau, 22(2), 16–23.

    Google Scholar 

  • Hungr, O., Evans, S. G., Bovis, M. J., & Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3), 221–238.

    Article  Google Scholar 

  • Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., et al. (2012). Use of LiDAR in landslide investigations: A review. Natural Hazards, 61, 5–28.

    Article  Google Scholar 

  • Jahromi, A. B., Zoej, M. J. V., Mohammadzadeh, A., & Sadeghian, S. (2011). A novel filtering algorithm for bare-earth extraction from airborne laser scanning data using an artificial neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(4), 836–843.

    Article  Google Scholar 

  • Kannan, M., Saranathan, E., & Anabalagan, R. (2013). Landslide vulnerability mapping using frequency ratio model: A geospatial approach in Bodi-Bodimettu Ghat section. Arabian Journal of Geosciences, 6(8), 2901–2913.

    Article  Google Scholar 

  • Katz, O., Morgan, J. K., Aharonov, E., & Dugan, B. (2014). Controls on the size and geometry of landslides: Insights from discrete element numerical simulations. Geomorphology, 220, 104–113.

    Article  Google Scholar 

  • Krabill, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., et al. (1999). Rapid thinning of parts of the southern Greenland ice sheet. Science (New York, N.Y.), 283(5407), 1522–1524.

    Article  CAS  Google Scholar 

  • Krabill, W., Thomas, R., Martin, C., Swift, R., & Frederick, E. (1995). Accuracy of airborne laser altimetry over the Greenland ice sheet. International Journal of Remote Sensing, 16(7), 1211–1222.

    Article  Google Scholar 

  • Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and remote Sensing, 53(4), 193–203.

    Article  Google Scholar 

  • Kritikos, T., & Davies, T. (2015). Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: Application to western Southern Alps of New Zealand. Landslides, 12(6), 1051–1075.

    Article  Google Scholar 

  • Lan, H., Martin, C. D., Zhou, C., & Lim, C. H. (2010). Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology, 118(1), 213–223.

    Article  Google Scholar 

  • Latif, Z. A., Aman, S. N. A., & Pradhan, B. (2012, March). Landslide susceptibility mapping using LiDAR derived factors and frequency ratio model: Ulu Klang area, Malaysia. In IEEE 8th international colloquium on signal processing and its applications (CSPA), 2012 (pp. 378–382). IEEE.

    Google Scholar 

  • Lemmens, M. (2011). Geo-information: Technologies, applications and the environment (Vol. 5). Berlin: Springer Science & Business Media.

    Book  Google Scholar 

  • Lichti, D. D. (2007). Error modeling, calibration and analysis of an AM–CW terrestrial laser scanner system. ISPRS Journal of Photogrammetry and Remote Sensing, 61(5), 307–324.

    Article  Google Scholar 

  • Lichti, D. D., & Jamtsho, S. (2006). Angular resolution of terrestrial laser scanners. The Photogrammetric Record, 21(114), 141–160.

    Article  Google Scholar 

  • Lindenberger, J. (1993). Laser-Profilmessungen zur Topographischen Ge-landeaufnahme (Doctoral dissertation, Zugl.: Stuttgart, Univ., Diss., 1992).

    Google Scholar 

  • Lu, P., Stumpf, A., Kerle, N., & Casagli, N. (2011). Object-oriented change detection for landslide rapid mapping. IEEE Geoscience and Remote Sensing Letters, 8(4), 701–705.

    Article  Google Scholar 

  • Manetti, L., & Steinmann, G. (2007). 3DeMoN ROBOVEC-integration of a new measuring instrument in an existing generic remote monitoring platform. In 7th international symposium on field measurements in geomechanics. FMGM, (LMS-CONF-2008-035) (pp. 1–12).

    Google Scholar 

  • McKean, J., & Roering, J. (2004). Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57, 331–351.

    Article  Google Scholar 

  • Moosavi, V., Talebi, A., & Shirmohammadi, B. (2014). Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology, 204, 646–656.

    Article  Google Scholar 

  • Nefeslioglu, H. A., Duman, T. Y., & Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94(3), 401–418.

    Article  Google Scholar 

  • Nichol, J., & Wong, M. S. (2005). Satellite remote sensing for detailed landslide inventories using change detection and image fusion. International Journal of Remote Sensing, 26(9), 1913–1926.

    Article  Google Scholar 

  • Pesci, A., Teza, G., & Ventura, G. (2008). Remote sensing of volcanic terrains by terrestrial laser scanner: Preliminary reflectance and RGB implications for studying Vesuvius crater (Italy). Annals of Geophysics, 51(4), 633–653.

    Google Scholar 

  • Petrie, G., & Toth, C. K. (2008). Introduction to laser ranging, profiling, and scanning. Topographic Laser Ranging and Scanning: Principles and Processing, 1–28.

    Google Scholar 

  • Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed. Natural hazards, 63(2), 965–996‏.

    Google Scholar 

  • Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., & Moradi, H. R. (2013). Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences, 6(7), 2351–2365.

    Article  Google Scholar 

  • Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.

    Article  Google Scholar 

  • Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1610–1622.

    Article  Google Scholar 

  • Pradhan, A. M. S., & Kim, Y. T. (2014). Relative effect method of landslide susceptibility zonation in weathered granite soil: A case study in Deokjeokri Creek, South Korea. Natural Hazards, 72(2), 1189–1217.

    Article  Google Scholar 

  • Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., et al. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), 725–742.

    Article  Google Scholar 

  • Roering, J. J., Mackey, B. H., Marshall, J. A., Sweeney, K. E., Deligne, N. I., Booth, A. M., et al. (2013). Connecting the dots with airborne LiDAR for geomorphic fieldwork. Geomorphology, 200, 172–183.

    Article  Google Scholar 

  • Scaioni, M., Feng, Y., Lu, P., Qiao, G., Tong, X., Li, R., et al. (2014). Close-range photogrammetric techniques for deformation measurement: Applications to landslides. In M. Scaioni (Ed.), Modern technologies for landslide investigation and prediction (pp. 13–41). Berlin: Springer.

    Google Scholar 

  • Schulz, W. H. (2004). Landslides mapped using LiDAR imagery, Seattle, Washington. US Geological Survey Open-File Report, 1396(11)‏.

    Google Scholar 

  • Schwalbe, E., & Maas, H. G. (2009). Motion analysis of fast flowing glaciers from multi-temporal terrestrial laser scanning. Photogrammetrie-Fernerkundung-Geoinformation, 2009(1), 91–98.

    Article  Google Scholar 

  • Sithole, G., & Vosselman, G. (2001). Filtering of laser altimetry data using a slope adaptive filter. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/W4), 203–210.

    Google Scholar 

  • Slatton, K. C., Carter, W. E., Shrestha, R. L., & Dietrich, W. (2007). Airborne laser swath mapping: Achieving the resolution and accuracy required for geosurficial research. Geophysical Research Letters, 34(23).

    Google Scholar 

  • Takahashi, T. (2014). Debris flow: Mechanics, prediction and countermeasures. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–319.

    Article  Google Scholar 

  • Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical Problems in Engineering.‏

    Google Scholar 

  • Toutin, T. (2002). Impact of terrain slope and aspect on radargrammetric DEM accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 57(3), 228–240.

    Article  Google Scholar 

  • Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons, J., Nyssen, J., et al. (2005). The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology, 67(3), 351–363.

    Article  Google Scholar 

  • Van Westen, C. J., Castellanos, E., & Kuriakose, S. K. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102, 112–131.

    Article  Google Scholar 

  • van Westen, C. J., van Asch, T. W. J., & Soeters, R. (2006). Landslide hazard and risk zonation—Why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65, 167–184.

    Article  Google Scholar 

  • Vosselman, G. (2000). Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, 33(B3/2; PART 3), 935–942.

    Google Scholar 

  • Wang, G., Joyce, J., Phillips, D., Shrestha, R., & Carter, W. (2013). Delineating and de-fining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LiDAR data. Landslides, 10(4), 503–513.

    Article  Google Scholar 

  • Wehr, A., & Lohr, U. (1999). Airborne laser scanning—An introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 68–82.

    Article  Google Scholar 

  • Williams, K., Olsen, M. J., Roe, G. V., & Glennie, C. (2013). Synthesis of transportation applications of mobile LiDAR. Remote Sensing, 5(9), 4652–4692.

    Article  Google Scholar 

  • Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, 72(1), 1–12.

    Article  Google Scholar 

  • Yalcin, A., & Bulut, F. (2007). Landslide susceptibility mapping using GIS and digital photogrammetric techniques: A case study from Ardesen (NE-Turkey). Natural Hazards, 41(1), 201–226.

    Article  Google Scholar 

  • Yan, W. Y., Shaker, A., Habib, A., & Kersting, A. P. (2012). Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 35–44.

    Article  Google Scholar 

  • Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A com-parison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3), 251–266.

    Article  Google Scholar 

  • Zhan, Z., & Lai, B. (2015). A novel DSM filtering algorithm for landslide monitoring based on multiconstraints. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1), 324–331.

    Article  Google Scholar 

  • Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J., & Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872–882.

    Article  Google Scholar 

  • Zhang, Q., Wang, L., Zhang, X. Y., Huang, G. W., Ding, X. L., Dai, W. J., & Yang, W. T. (2008). Application of multi-antenna GPS technique in the stability monitoring of roadside slopes. In Landslides and engineered slopes: From the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes (pp. 1367–1372). Xi’an: Taylor & Francis.

    Google Scholar 

  • Zhang, Y., Xiong, X., & Hu, X. (2013). Rigorous LiDAR strip adjustment with tri-angulated aerial imagery. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(W2), 361–366.

    Article  Google Scholar 

  • Zhang, Y., Xiong, X., Zheng, M., & Huang, X. (2015). LiDAR strip adjustment using multifeatures matched with aerial images. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 976–987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswajeet Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pradhan, B., Sameen, M.I. (2017). Laser Scanning Systems in Landslide Studies. In: Pradhan, B. (eds) Laser Scanning Applications in Landslide Assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-55342-9_1

Download citation

Publish with us

Policies and ethics