Laser Scanning Systems in Landslide Studies

  • Biswajeet PradhanEmail author
  • Maher Ibrahim Sameen


Remote sensing techniques have undergone rapid and significant improvements in the last few decades. The capability of new and enhanced remote sensing techniques to acquire 3D spatial data and very high-resolution terrain contours allows advanced and effective investigations of landslide phenomena. Data from multi-sensors supplemented with airborne- and ground-based data collection techniques


Global Position System Debris Flow Point Cloud Global Navigation Satellite System Global Navigation Satellite System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abellán, A., Oppikofer, T., Jaboyedoff, M., Rosser, N. J., Lim, M., & Lato, M. J. (2014). Terrestrial laser scanning of rock slope instabilities. Earth Surface Processes and Landforms, 39(1), 80–97.Google Scholar
  2. Akgun, A., & Erkan, O. (2016). Landslide susceptibility mapping by geographical information system-based multivariate statistical and deterministic models: In an artificial reservoir area at Northern Turkey. Arabian Journal of Geosciences, 9(2), 1–15.CrossRefGoogle Scholar
  3. Al-Durgham, M., Fotopoulos, G., & Glennie, C. (2010). On the accuracy of Li-DAR derived digital surface models. Gravity, geoid and earth observation (pp. 689–695). Berlin: Springer.CrossRefGoogle Scholar
  4. Ardizzone, F., Cardinali, M., Galli, M., Guzzetti, F., & Reichenbach, P. (2007). Identification and mapping of recent rainfall-induced landslides using elevation data collected by airborne LiDAR. Natural Hazards and Earth System Science, 7(6), 637–650.CrossRefGoogle Scholar
  5. Axelsson, P. (2000). DEM generation from laser scanner data using adaptive TIN models. International Archives of Photogrammetry and Remote Sensing, 33(B4/1; PART 4), 111–118.Google Scholar
  6. Ayalew, L., Yamagishi, H., & Ugawa, N. (2004). Landslide susceptibility map-ping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides, 1(1), 73–81.CrossRefGoogle Scholar
  7. Baltsavias, E. P. (1999). Airborne laser scanning: Basic relations and formulas. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 199–214.CrossRefGoogle Scholar
  8. Barendse, P. E., Brian, M., & Machan, G. (2009). In-place microelectromechanical system inclinometer strings: Evaluation of an evolving technology. In Transportation Research Board 88th Annual Meeting (No. 09-2118).Google Scholar
  9. Baumann, V., Wick, E., Horton, P., & Jaboyedoff, M. (2011, October). Debris flow susceptibility mapping at a regional scale along the National Road N7, Argentina. In Proceedings of the 14th Pan-American conference on soil mechanics and geotechnical engineering (pp. 2–6).Google Scholar
  10. Bromhead, E., Curtis, R., & Schofield, W. (1988). Observation and adjustment of a geodetic survey network for measurement of landslide movement. In C. Bonnard & A. A. Balkema (Eds.), Land-slides-Glissements De Terrains, Proceedings of 5th International Symposium on Landslides (pp. 383–386). The Netherlands: Rotterdam.Google Scholar
  11. Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378.CrossRefGoogle Scholar
  12. Burghaus, S., Bell, R., & Kuhlmann, H. (2009). Improvement of a terrestric network for movement analysis of a complex landslide. In Presentation at FIG Conference, Eilat, Israel.Google Scholar
  13. Burrough, P. A., McDonnell, R. A., McDonnell, R., & Lloyd, C. D. (2015). Principles of geographical information systems. Oxford: Oxford University Press.Google Scholar
  14. Canuti, P., Casagli, N., Catani, F., Falorni, G., & Farina, P. (2007). Integration of remote sensing techniques in different stages of landslide response. Progress in Landslide Science (pp. 251–260). Heidelberg: Springer.CrossRefGoogle Scholar
  15. Chen, X. L., Liu, C. G., Chang, Z. F., & Zhou, Q. (2016). The relationship between the slope angle and the landslide size derived from limit equilibrium simulations. Geomorphology, 253, 547–550.CrossRefGoogle Scholar
  16. Chow, T. E., & Hodgson, M. E. (2009). Effects of LiDAR post-spacing and DEM resolution to mean slope estimation. International Journal of Geographical Information Science, 23(10), 1277–1295.CrossRefGoogle Scholar
  17. Conforti, M., Aucelli, P. P., Robustelli, G., & Scarciglia, F. (2011). Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy). Natural Hazards, 56(3), 881–898.CrossRefGoogle Scholar
  18. Daehne, A., & Corsini, A. (2013). Kinematics of active earthflows revealed by digital image correlation and DEM subtraction techniques applied to multi-temporal LiDAR data. Earth Surf Process Landforms, 38, 640–654.CrossRefGoogle Scholar
  19. Dallaire, G. (1974). Electronic distance measuring revolution well underway. Civil Engineering, 44(10), 66–71.Google Scholar
  20. De Blasio, F. V. (2011). Introduction to the physics of landslides: Lecture notes on the dynamics of mass wasting. Berlin: Springer Science & Business Media.CrossRefGoogle Scholar
  21. Derron, M. H., & Jaboyedoff, M. (2010). Preface “LiDAR and DEM techniques for landslides monitoring and characterization”. Natural Hazards and Earth System Sciences, 10, 1877–1879.CrossRefGoogle Scholar
  22. Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165.CrossRefGoogle Scholar
  23. Dou, J., Yamagishi, H., Pourghasemi, H. R., Yunus, A. P., Song, X., Xu, Y., et al. (2015). An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Natural Hazards, 78(3), 1749–1776.CrossRefGoogle Scholar
  24. Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Nyssen, J., Moeyer-sons, J., et al. (2007). Use of LiDAR-derived images for mapping old landslides under forest. Earth Surface Processes and Landforms, 32(5), 754–769.CrossRefGoogle Scholar
  25. Fernandes, N. F., Guimarães, R. F., Gomes, R. A., Vieira, B. C., Montgomery, D. R., & Greenberg, H. (2004). Topographic controls of landslides in Rio de Janeiro: Field evidence and modeling. CATENA, 55(2), 163–181.CrossRefGoogle Scholar
  26. Fernández, T., Jiménez-Perálvarez, J. D., Fernández, P., El Hamdouni, R., Cardenal, F. J., Delgado, J., et al. (2008) Automatic detection of landslide features with remote sensing techniques in the Betic Cordilleras (Granada, Southern Spain). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII. Part B8: 351–356. ISSN 1682–1750.Google Scholar
  27. Fornaciai, A., Bisson, M., Landi, P., Mazzarini, F., & Pareschi, M. T. (2010). A LiDAR survey of Stromboli volcano (Italy): Digital elevation model-based geomorphology and intensity analysis. International Journal of Remote Sensing, 31(12), 3177–3194.CrossRefGoogle Scholar
  28. Ghuffar, S., Székely, B., Roncat, A., & Pfeifer, N. (2013). Landslide displacement monitoring using 3D range flow on airborne and terrestrial LiDAR data. Remote Sensing, 5(6), 2720–2745.CrossRefGoogle Scholar
  29. Glenn, N. F., Streutker, D. R., Chadwick, D. J., Thackray, G. D., & Dorsch, S. J. (2006). Analysis of LiDAR derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology, 73, 131–148.CrossRefGoogle Scholar
  30. Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide inventory maps: New tools for an old problem. Earth-Science Reviews, 112, 42–66.CrossRefGoogle Scholar
  31. Habib, A. (2008). Accuracy, quality assurance and quality control of LiDAR data, Chap 9. Topographic laser ranging and scanning: Principles and processing (pp. 269–294). Boca Rotan: CRC Press, Taylor & Francis.Google Scholar
  32. Habib, A. F., Kersting, A. P., Shaker, A., & Yan, W. Y. (2011). Geometric calibration and radiometric correction of LiDAR data and their impact on the quality of derived products. Sensors, 11(9), 9069–9097.CrossRefGoogle Scholar
  33. Haneberg, W. C., Cole, W. F., & Kasali, G. (2009). High-resolution LiDAR-based landslide hazard mapping and modeling, UCSF Parnassus Campus, San Francisco, USA. Bulletin of Engineering Geology and the Environment, 68, 263–276.CrossRefGoogle Scholar
  34. Hanson, G. E. (1999). U.S. Patent No. 5,872,354. Washington, DC: U.S. Patent and Trademark Office‏.Google Scholar
  35. Hervás, J., Barredo, J. I., Rosin, P. L., Pasuto, A., Mantovani, F., & Silvano, S. (2003). Monitoring landslides from optical remotely sensed imagery: The case history of Tessina landslide, Italy. Geomorphology, 54, 63–75.CrossRefGoogle Scholar
  36. Hungr, O., & Evans, S. G. (2004). The occurrence and classification of massive rock slope failure. Felsbau, 22(2), 16–23.Google Scholar
  37. Hungr, O., Evans, S. G., Bovis, M. J., & Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3), 221–238.CrossRefGoogle Scholar
  38. Jaboyedoff, M., Oppikofer, T., Abellán, A., Derron, M.-H., Loye, A., Metzger, R., et al. (2012). Use of LiDAR in landslide investigations: A review. Natural Hazards, 61, 5–28.CrossRefGoogle Scholar
  39. Jahromi, A. B., Zoej, M. J. V., Mohammadzadeh, A., & Sadeghian, S. (2011). A novel filtering algorithm for bare-earth extraction from airborne laser scanning data using an artificial neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(4), 836–843.CrossRefGoogle Scholar
  40. Kannan, M., Saranathan, E., & Anabalagan, R. (2013). Landslide vulnerability mapping using frequency ratio model: A geospatial approach in Bodi-Bodimettu Ghat section. Arabian Journal of Geosciences, 6(8), 2901–2913.CrossRefGoogle Scholar
  41. Katz, O., Morgan, J. K., Aharonov, E., & Dugan, B. (2014). Controls on the size and geometry of landslides: Insights from discrete element numerical simulations. Geomorphology, 220, 104–113.CrossRefGoogle Scholar
  42. Krabill, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., et al. (1999). Rapid thinning of parts of the southern Greenland ice sheet. Science (New York, N.Y.), 283(5407), 1522–1524.CrossRefGoogle Scholar
  43. Krabill, W., Thomas, R., Martin, C., Swift, R., & Frederick, E. (1995). Accuracy of airborne laser altimetry over the Greenland ice sheet. International Journal of Remote Sensing, 16(7), 1211–1222.CrossRefGoogle Scholar
  44. Kraus, K., & Pfeifer, N. (1998). Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS Journal of Photogrammetry and remote Sensing, 53(4), 193–203.CrossRefGoogle Scholar
  45. Kritikos, T., & Davies, T. (2015). Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: Application to western Southern Alps of New Zealand. Landslides, 12(6), 1051–1075.CrossRefGoogle Scholar
  46. Lan, H., Martin, C. D., Zhou, C., & Lim, C. H. (2010). Rockfall hazard analysis using LiDAR and spatial modeling. Geomorphology, 118(1), 213–223.CrossRefGoogle Scholar
  47. Latif, Z. A., Aman, S. N. A., & Pradhan, B. (2012, March). Landslide susceptibility mapping using LiDAR derived factors and frequency ratio model: Ulu Klang area, Malaysia. In IEEE 8th international colloquium on signal processing and its applications (CSPA), 2012 (pp. 378–382). IEEE.Google Scholar
  48. Lemmens, M. (2011). Geo-information: Technologies, applications and the environment (Vol. 5). Berlin: Springer Science & Business Media.CrossRefGoogle Scholar
  49. Lichti, D. D. (2007). Error modeling, calibration and analysis of an AM–CW terrestrial laser scanner system. ISPRS Journal of Photogrammetry and Remote Sensing, 61(5), 307–324.CrossRefGoogle Scholar
  50. Lichti, D. D., & Jamtsho, S. (2006). Angular resolution of terrestrial laser scanners. The Photogrammetric Record, 21(114), 141–160.CrossRefGoogle Scholar
  51. Lindenberger, J. (1993). Laser-Profilmessungen zur Topographischen Ge-landeaufnahme (Doctoral dissertation, Zugl.: Stuttgart, Univ., Diss., 1992).Google Scholar
  52. Lu, P., Stumpf, A., Kerle, N., & Casagli, N. (2011). Object-oriented change detection for landslide rapid mapping. IEEE Geoscience and Remote Sensing Letters, 8(4), 701–705.CrossRefGoogle Scholar
  53. Manetti, L., & Steinmann, G. (2007). 3DeMoN ROBOVEC-integration of a new measuring instrument in an existing generic remote monitoring platform. In 7th international symposium on field measurements in geomechanics. FMGM, (LMS-CONF-2008-035) (pp. 1–12).Google Scholar
  54. McKean, J., & Roering, J. (2004). Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology, 57, 331–351.CrossRefGoogle Scholar
  55. Moosavi, V., Talebi, A., & Shirmohammadi, B. (2014). Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology, 204, 646–656.CrossRefGoogle Scholar
  56. Nefeslioglu, H. A., Duman, T. Y., & Durmaz, S. (2008). Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94(3), 401–418.CrossRefGoogle Scholar
  57. Nichol, J., & Wong, M. S. (2005). Satellite remote sensing for detailed landslide inventories using change detection and image fusion. International Journal of Remote Sensing, 26(9), 1913–1926.CrossRefGoogle Scholar
  58. Pesci, A., Teza, G., & Ventura, G. (2008). Remote sensing of volcanic terrains by terrestrial laser scanner: Preliminary reflectance and RGB implications for studying Vesuvius crater (Italy). Annals of Geophysics, 51(4), 633–653.Google Scholar
  59. Petrie, G., & Toth, C. K. (2008). Introduction to laser ranging, profiling, and scanning. Topographic Laser Ranging and Scanning: Principles and Processing, 1–28.Google Scholar
  60. Pourghasemi, H. R., Pradhan, B., & Gokceoglu, C. (2012). Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed. Natural hazards, 63(2), 965–996‏.Google Scholar
  61. Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Mohammadi, M., & Moradi, H. R. (2013). Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arabian Journal of Geosciences, 6(7), 2351–2365.CrossRefGoogle Scholar
  62. Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.CrossRefGoogle Scholar
  63. Pradhan, B., Jebur, M. N., Shafri, H. Z. M., & Tehrany, M. S. (2016). Data fusion technique using wavelet transform and Taguchi methods for automatic landslide detection from airborne laser scanning data and quickbird satellite imagery. IEEE Transactions on Geoscience and Remote Sensing, 54(3), 1610–1622.CrossRefGoogle Scholar
  64. Pradhan, A. M. S., & Kim, Y. T. (2014). Relative effect method of landslide susceptibility zonation in weathered granite soil: A case study in Deokjeokri Creek, South Korea. Natural Hazards, 72(2), 1189–1217.CrossRefGoogle Scholar
  65. Regmi, A. D., Devkota, K. C., Yoshida, K., Pradhan, B., Pourghasemi, H. R., Kumamoto, T., et al. (2014). Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geosciences, 7(2), 725–742.CrossRefGoogle Scholar
  66. Roering, J. J., Mackey, B. H., Marshall, J. A., Sweeney, K. E., Deligne, N. I., Booth, A. M., et al. (2013). Connecting the dots with airborne LiDAR for geomorphic fieldwork. Geomorphology, 200, 172–183.CrossRefGoogle Scholar
  67. Scaioni, M., Feng, Y., Lu, P., Qiao, G., Tong, X., Li, R., et al. (2014). Close-range photogrammetric techniques for deformation measurement: Applications to landslides. In M. Scaioni (Ed.), Modern technologies for landslide investigation and prediction (pp. 13–41). Berlin: Springer.Google Scholar
  68. Schulz, W. H. (2004). Landslides mapped using LiDAR imagery, Seattle, Washington. US Geological Survey Open-File Report, 1396(11)‏.Google Scholar
  69. Schwalbe, E., & Maas, H. G. (2009). Motion analysis of fast flowing glaciers from multi-temporal terrestrial laser scanning. Photogrammetrie-Fernerkundung-Geoinformation, 2009(1), 91–98.CrossRefGoogle Scholar
  70. Sithole, G., & Vosselman, G. (2001). Filtering of laser altimetry data using a slope adaptive filter. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, 34(3/W4), 203–210.Google Scholar
  71. Slatton, K. C., Carter, W. E., Shrestha, R. L., & Dietrich, W. (2007). Airborne laser swath mapping: Achieving the resolution and accuracy required for geosurficial research. Geophysical Research Letters, 34(23).Google Scholar
  72. Takahashi, T. (2014). Debris flow: Mechanics, prediction and countermeasures. Boca Raton: CRC Press.CrossRefGoogle Scholar
  73. Tarboton, D. G. (1997). A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2), 309–319.CrossRefGoogle Scholar
  74. Tien Bui, D., Pradhan, B., Lofman, O., & Revhaug, I. (2012). Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and Naive Bayes Models. Mathematical Problems in Engineering.‏Google Scholar
  75. Toutin, T. (2002). Impact of terrain slope and aspect on radargrammetric DEM accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 57(3), 228–240.CrossRefGoogle Scholar
  76. Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons, J., Nyssen, J., et al. (2005). The effectiveness of hillshade maps and expert knowledge in mapping old deep-seated landslides. Geomorphology, 67(3), 351–363.CrossRefGoogle Scholar
  77. Van Westen, C. J., Castellanos, E., & Kuriakose, S. K. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102, 112–131.CrossRefGoogle Scholar
  78. van Westen, C. J., van Asch, T. W. J., & Soeters, R. (2006). Landslide hazard and risk zonation—Why is it still so difficult? Bulletin of Engineering Geology and the Environment, 65, 167–184.CrossRefGoogle Scholar
  79. Vosselman, G. (2000). Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, 33(B3/2; PART 3), 935–942.Google Scholar
  80. Wang, G., Joyce, J., Phillips, D., Shrestha, R., & Carter, W. (2013). Delineating and de-fining the boundaries of an active landslide in the rainforest of Puerto Rico using a combination of airborne and terrestrial LiDAR data. Landslides, 10(4), 503–513.CrossRefGoogle Scholar
  81. Wehr, A., & Lohr, U. (1999). Airborne laser scanning—An introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 68–82.CrossRefGoogle Scholar
  82. Williams, K., Olsen, M. J., Roe, G. V., & Glennie, C. (2013). Synthesis of transportation applications of mobile LiDAR. Remote Sensing, 5(9), 4652–4692.CrossRefGoogle Scholar
  83. Yalcin, A. (2008). GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena, 72(1), 1–12.CrossRefGoogle Scholar
  84. Yalcin, A., & Bulut, F. (2007). Landslide susceptibility mapping using GIS and digital photogrammetric techniques: A case study from Ardesen (NE-Turkey). Natural Hazards, 41(1), 201–226.CrossRefGoogle Scholar
  85. Yan, W. Y., Shaker, A., Habib, A., & Kersting, A. P. (2012). Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 35–44.CrossRefGoogle Scholar
  86. Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A com-parison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3), 251–266.CrossRefGoogle Scholar
  87. Zhan, Z., & Lai, B. (2015). A novel DSM filtering algorithm for landslide monitoring based on multiconstraints. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(1), 324–331.CrossRefGoogle Scholar
  88. Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J., & Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, 41(4), 872–882.CrossRefGoogle Scholar
  89. Zhang, Q., Wang, L., Zhang, X. Y., Huang, G. W., Ding, X. L., Dai, W. J., & Yang, W. T. (2008). Application of multi-antenna GPS technique in the stability monitoring of roadside slopes. In Landslides and engineered slopes: From the past to the future. Proceedings of the tenth international symposium on landslides and engineered slopes (pp. 1367–1372). Xi’an: Taylor & Francis.Google Scholar
  90. Zhang, Y., Xiong, X., & Hu, X. (2013). Rigorous LiDAR strip adjustment with tri-angulated aerial imagery. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 5(W2), 361–366.CrossRefGoogle Scholar
  91. Zhang, Y., Xiong, X., Zheng, M., & Huang, X. (2015). LiDAR strip adjustment using multifeatures matched with aerial images. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 976–987.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations