Skip to main content

Mitochondrial Bioenergetics and Dysfunction in Failing Heart

  • Chapter
  • First Online:
Mitochondrial Dynamics in Cardiovascular Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 982))

Abstract

Energy insufficiency has been recognized as a key feature of systolic heart failure. Although mitochondria have long been known to sustain myocardial work energy supply, the capacity to therapeutically target mitochondrial bioenergetics dysfunction is hampered by a complex interplay of multiple perturbations that progressively compound causing myocardial failure and collapse. Compared to non-failing human donor hearts, activity rates of complexes I and IV, nicotinamide nucleotide transhydrogenase (NADPH-transhydrogenase, Nnt) and the Krebs cycle enzymes isocitrate dehydrogenase, malate dehydrogenase and aconitase are markedly decreased in end-stage heart failure. Diminished REDOX capacity with lower total glutathione and coenzyme Q10 levels are also a feature of chronic left ventricular failure. Decreased enzyme activities in part relate to abundant and highly specific oxidative, nitrosylative, and hyperacetylation modifications. In this brief review we highlight that energy deficiency in end-stage failing human left ventricle predominantly involves concomitantly impaired activities of key electron transport chain and Krebs cycle enzymes rather than altered expression of respective genes or proteins. Augmented oxidative modification of these enzyme subunit structures, and the formation of highly reactive secondary metabolites, implicates dysfunction due to diminished capacity for management of mitochondrial reactive oxygen species, which contribute further to progressive decreases in bioenergetic capacity and contractile function in human heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wisneski JA, Gertz EW, Neese RA, Gruenke LD, Morris DL, Craig JC. Metabolic fate of extracted glucose in normal human myocardium. J Clin Invest. 1985;76:1819–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stanley WC, Recchia FA, Lopaschuk GD. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005;85:1093–129.

    Article  CAS  PubMed  Google Scholar 

  3. Verdejo HE, del Campo A, Troncoso R, Gutierrez T, Toro B, Quiroga C, Pedrozo Z, Munoz JP, Garcia L, Castro PF, Lavandero S. Mitochondria, myocardial remodeling, and cardiovascular disease. Curr Hypertens Rep. 2012;14:532–9.

    Article  CAS  PubMed  Google Scholar 

  4. Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res. 2004;95:135–45.

    Article  CAS  PubMed  Google Scholar 

  5. Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation. 1997;96:2190–6.

    Article  CAS  PubMed  Google Scholar 

  6. Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS. Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ Res. 1996;78:893–902.

    Article  CAS  PubMed  Google Scholar 

  7. Nascimben L, Ingwall JS, Pauletto P, Friedrich J, Gwathmey JK, Saks V, Pessina AC, Allen PD. Creatine kinase system in failing and nonfailing human myocardium. Circulation. 1996;94:1894–901.

    Article  CAS  PubMed  Google Scholar 

  8. Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet (London, England). 1991;338:973–6.

    Article  CAS  Google Scholar 

  9. Beer M, Seyfarth T, Sandstede J, Landschutz W, Lipke C, Kostler H, von Kienlin M, Harre K, Hahn D, Neubauer S. Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. J Am Coll Cardiol. 2002;40:1267–74.

    Article  CAS  PubMed  Google Scholar 

  10. Starling RC, Hammer DF, Altschuld RA. Human myocardial ATP content and in vivo contractile function. Mol Cell Biochem. 1998;180:171–7.

    Article  CAS  PubMed  Google Scholar 

  11. Cordero-Reyes AM, Gupte AA, Youker KA, Loebe M, Hsueh WA, Torre-Amione G, Taegtmeyer H, Hamilton DJ. Freshly isolated mitochondria from failing human hearts exhibit preserved respiratory function. J Mol Cell Cardiol. 2014;68:98–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li X. SIRT1 and energy metabolism. Acta Biochim Biophys Sin. 2013;45:51–60.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol. 2017 (in press). doi: 10.1113/JP272781.

    Google Scholar 

  14. Lu TM, Tsai JY, Chen YC, Huang CY, Hsu HL, Weng CF, Shih CC, Hsu CP. Downregulation of Sirt1 as aging change in advanced heart failure. J Biomed Sci. 2014;21:57.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sharov VG, Goussev A, Lesch M, Goldstein S, Sabbah HN. Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. J Mol Cell Cardiol. 1998;30:1757–62.

    Article  CAS  PubMed  Google Scholar 

  16. Sharov VG, Todor AV, Silverman N, Goldstein S, Sabbah HN. Abnormal mitochondrial respiration in failed human myocardium. J Mol Cell Cardiol. 2000;32:2361–7.

    Article  CAS  PubMed  Google Scholar 

  17. Sheeran FL, Pepe S. Posttranslational modifications and dysfunction of mitochondrial enzymes in human heart failure. Am J Physiol Endocrinol Metab. 2016;311:E449–60.

    Article  PubMed  Google Scholar 

  18. Scheubel RJ, Tostlebe M, Simm A, Rohrbach S, Prondzinsky R, Gellerich FN, Silber RE, Holtz J. Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. J Am Coll Cardiol. 2002;40:2174–81.

    Article  CAS  PubMed  Google Scholar 

  19. Jarreta D, Orus J, Barrientos A, Miro O, Roig E, Heras M, Moraes CT, Cardellach F, Casademont J. Mitochondrial function in heart muscle from patients with idiopathic dilated cardiomyopathy. Cardiovasc Res. 2000;45:860–5.

    Article  CAS  PubMed  Google Scholar 

  20. Quigley AF, Kapsa RM, Esmore D, Hale G, Byrne E. Mitochondrial respiratory chain activity in idiopathic dilated cardiomyopathy. J Card Fail. 2000;6:47–55.

    Article  CAS  PubMed  Google Scholar 

  21. Sheeran FL, Pepe S. Energy deficiency in the failing heart: linking increased reactive oxygen species and disruption of oxidative phosphorylation rate. Biochim Biophys Acta. 1757;2006:543–52.

    Google Scholar 

  22. Turrens JF, Alexandre A, Lehninger AL. Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch Biochem Biophys. 1985;237:408–14.

    Article  CAS  PubMed  Google Scholar 

  23. Turrens JF. Superoxide production by the mitochondrial respiratory chain. Biosci Rep. 1997;17:3–8.

    Article  CAS  PubMed  Google Scholar 

  24. Viola HM, Hool LC. Qo site of mitochondrial complex III is the source of increased superoxide after transient exposure to hydrogen peroxide. J Mol Cell Cardiol. 2010;49:875–85.

    Article  CAS  PubMed  Google Scholar 

  25. Sam F, Kerstetter DL, Pimental DR, Mulukutla S, Tabaee A, Bristow MR, Colucci WS, Sawyer DB. Increased reactive oxygen species production and functional alterations in antioxidant enzymes in human failing myocardium. J Card Fail. 2005;11:473–80.

    Article  CAS  PubMed  Google Scholar 

  26. Nakamura K, Kusano K, Nakamura Y, Kakishita M, Ohta K, Nagase S, Yamamoto M, Miyaji K, Saito H, Morita H, Emori T, Matsubara H, Toyokuni S, Ohe T. Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation. 2002;105:2867–71.

    Article  CAS  PubMed  Google Scholar 

  27. Mallat Z, Philip I, Lebret M, Chatel D, Maclouf J, Tedgui A. Elevated levels of 8-iso-prostaglandin F2alpha in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation. 1998;97:1536–9.

    Article  CAS  PubMed  Google Scholar 

  28. Canton M, Menazza S, Sheeran FL, Polverino de Laureto P, Di Lisa F, Pepe S. Oxidation of myofibrillar proteins in human heart failure. J Am Coll Cardiol. 2011;57:300–9.

    Article  CAS  PubMed  Google Scholar 

  29. Csala M, Kardon T, Legeza B, Lizak B, Mandl J, Margittai E, Puskas F, Szaraz P, Szelenyi P, Banhegyi G. On the role of 4-hydroxynonenal in health and disease. Biochim Biophys Acta. 2015;1852:826–38.

    Article  CAS  PubMed  Google Scholar 

  30. Lakatta EG, Sollott SJ, Pepe S. The old heart: operating on the edge. Novartis Found Symp 2001;235:172–196; discussion 196–201, 217–220.

    Google Scholar 

  31. Pepe S. Effect of dietary polyunsaturated fatty acids on age-related changes in cardiac mitochondrial membranes. Exp Gerontol. 2005;40:751–8.

    Article  PubMed  Google Scholar 

  32. Mak S, Lehotay DC, Yazdanpanah M, Azevedo ER, Liu PP, Newton GE. Unsaturated aldehydes including 4-OH-nonenal are elevated in patients with congestive heart failure. J Card Fail. 2000;6:108–14.

    Article  CAS  PubMed  Google Scholar 

  33. Humphries KM, Yoo Y, Szweda LI. Inhibition of NADH-linked mitochondrial respiration by 4-hydroxy-2-nonenal. Biochemistry. 1998;37:552–7.

    Article  CAS  PubMed  Google Scholar 

  34. Nakamura K, Miura D, Kusano KF, Fujimoto Y, Sumita-Yoshikawa W, Fuke S, Nishii N, Nagase S, Hata Y, Morita H, Matsubara H, Ohe T, Ito H. 4-Hydroxy-2-nonenal induces calcium overload via the generation of reactive oxygen species in isolated rat cardiac myocytes. J Card Fail. 2009;15:709–16.

    Article  CAS  PubMed  Google Scholar 

  35. Ichiki T, Tanaka M, Kobayashi M, Sugiyama N, Suzuki H, Nishikimi M, Ohnishi T, Nonaka I, Wada Y, Ozawa T. Disproportionate deficiency of iron-sulfur clusters and subunits of complex I in mitochondrial encephalomyopathy. Pediatr Res. 1989;25:194–201.

    Article  CAS  PubMed  Google Scholar 

  36. Taylor SW, Fahy E, Murray J, Capaldi RA, Ghosh SS. Oxidative post-translational modification of tryptophan residues in cardiac mitochondrial proteins. J Biol Chem. 2003;278:19587–90.

    Article  CAS  PubMed  Google Scholar 

  37. Sadek HA, Humphries KM, Szweda PA, Szweda LI. Selective inactivation of redox-sensitive mitochondrial enzymes during cardiac reperfusion. Arch Biochem Biophys. 2002;406:222–8.

    Article  CAS  PubMed  Google Scholar 

  38. Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH, Smeitink JA. Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain. 2009;132:833–42.

    Article  PubMed  Google Scholar 

  39. Moreno-Sanchez R, Hogue BA, Hansford RG. Influence of NAD-linked dehydrogenase activity on flux through oxidative phosphorylation. Biochem J. 1990;268:421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Benderdour M, Charron G, DeBlois D, Comte B, Des RC. Cardiac mitochondrial NADP+-isocitrate dehydrogenase is inactivated through 4-hydroxynonenal adduct formation: an event that precedes hypertrophy development. J Biol Chem. 2003;278:45154–9.

    Article  CAS  PubMed  Google Scholar 

  41. Dodd MS, Atherton HJ, Carr CA, Stuckey DJ, West JA, Griffin JL, Radda GK, Clarke K, Heather LC, Tyler DJ. Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy. Circ Cardiovasc Imaging. 2014;7:895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sheeran FL, Rydström J, Shakhparonov MI, Pestov NB, Pepe S. Diminished NADPH transhydrogenase activity and mitochondrial redox regulation in human failing myocardium. Biochim Biophys Acta. 1797;2010:1138–48.

    Google Scholar 

  43. Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, Shao D, Takagi H, Oka S, Sadoshima J. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 2010;122:2170–82.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zhang Y, Wang B, Fu X, Guan S, Han W, Zhang J, Gan Q, Fang W, Ying W, Qu X. Exogenous NAD(+) administration significantly protects against myocardial ischemia/reperfusion injury in rat model. Am J Transl Res. 2016;8:3342–50.

    PubMed  PubMed Central  Google Scholar 

  45. Karamanlidis G, Lee CF, Garcia-Menendez L, Kolwicz Jr SC, Suthammarak W, Gong G, Sedensky MM, Morgan PG, Wang W, Tian R. Mitochondrial complex I deficiency increases protein acetylation and accelerates heart failure. Cell Metab. 2013;18:239–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee CF, Chavez JD, Garcia-Menendez L, Choi Y, Roe ND, Chiao YA, Edgar JS, Goo YA, Goodlett DR, Bruce JE, Tian R. Normalization of NAD+ redox balance as a therapy for heart failure. Circulation. 2016;134:883–94.

    Article  CAS  PubMed  Google Scholar 

  47. Degenhardt T, Saramaki A, Malinen M, Rieck M, Vaisanen S, Huotari A, Herzig KH, Muller R, Carlberg C. Three members of the human pyruvate dehydrogenase kinase gene family are direct targets of the peroxisome proliferator-activated receptor beta/delta. J Mol Biol. 2007;372:341–55.

    Article  CAS  PubMed  Google Scholar 

  48. Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med. 2000;10:238–45.

    Article  CAS  PubMed  Google Scholar 

  49. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012;337:96–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, Kunji ER, Martinou JC. Identification and functional expression of the mitochondrial pyruvate carrier. Science. 2012;337:93–6.

    Article  CAS  PubMed  Google Scholar 

  51. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998;329(Pt 1):191–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liang L, Li Q, Huang L, Li D, Li X. Sirt3 binds to and deacetylates mitochondrial pyruvate carrier 1 to enhance its activity. Biochem Biophys Res Commun. 2015;468:807–12.

    Article  CAS  PubMed  Google Scholar 

  53. Schell JC, Olson KA, Jiang L, Hawkins AJ, Van Vranken JG, Xie J, Egnatchik RA, Earl EG, DeBerardinis RJ, Rutter J. A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell. 2014;56:400–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fernandez-Caggiano M, Prysyazhna O, Barallobre-Barreiro J, CalvinoSantos R, Aldama Lopez G, Generosa Crespo-Leiro M, Eaton P, Domenech N. Analysis of mitochondrial proteins in the surviving myocardium after ischemia identifies mitochondrial pyruvate carrier expression as possible mediator of tissue viability. Mol Cell Proteomics. 2016;15:246–55.

    Article  CAS  PubMed  Google Scholar 

  55. Vacanti NM, Divakaruni AS, Green CR, Parker SJ, Henry RR, Ciaraldi TP, Murphy AN, Metallo CM. Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol Cell. 2014;56:425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Cox J, Rutter J,E, Dale Abel ED. Mitochondrial pyruvate transport is required for the cardiac adaptation to pressure overload. Circulation. 2016;134(Suppl.1):A17659.

    Google Scholar 

  57. Razeghi P, Young ME, Alcorn JL, Moravec CS, Frazier OH, Taegtmeyer H. Metabolic gene expression in fetal and failing human heart. Circulation. 2001;104:2923–31.

    Article  CAS  PubMed  Google Scholar 

  58. Zhao G, Jeoung NH, Burgess SC, Rosaaen-Stowe KA, Inagaki T, Latif S, Shelton JM, McAnally J, Bassel-Duby R, Harris RA, Richardson JA, Kliewer SA. Overexpression of pyruvate dehydrogenase kinase 4 in heart perturbs metabolism and exacerbates calcineurin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;294:H936–43.

    Article  CAS  PubMed  Google Scholar 

  59. Paradies G, Ruggiero FM. The effect of doxorubicin on the transport of pyruvate in rat-heart mitochondria. Biochem Biophys Res Commun. 1988;156:1302–7.

    Article  CAS  PubMed  Google Scholar 

  60. Paradies G, Ruggiero FM. Decreased activity of the pyruvate translocator and changes in the lipid composition in heart mitochondria from hypothyroid rats. Arch Biochem Biophys. 1989;269:595–602.

    Article  CAS  PubMed  Google Scholar 

  61. Taegtmeyer H. Switching metabolic genes to build a better heart. Circulation. 2002;106:2043–5.

    Article  PubMed  Google Scholar 

  62. Fry M, Green DE. Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem. 1981;256:1874–80.

    CAS  PubMed  Google Scholar 

  63. Fry M, Green DE. Cardiolipin requirement by cytochrome oxidase and the catalytic role of phospholipid. Biochem Biophys Res Commun. 1980;93:1238–46.

    Article  CAS  PubMed  Google Scholar 

  64. Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Federici A, Ruggiero FM. Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res. 2004;94:53–9.

    Article  CAS  PubMed  Google Scholar 

  65. Petrosillo G, Ruggiero FM, Di Venosa N, Paradies G. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J. 2003;17:714–6.

    Article  CAS  PubMed  Google Scholar 

  66. Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Serena D, Ruggiero FM. Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med. 1999;27:42–50.

    Article  CAS  PubMed  Google Scholar 

  67. Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zangi L, Geva J, Roberts AE, Ma Q, Ding J, Chen J, Wang DZ, Li K, Wang J, Wanders RJ, Kulik W, Vaz FM, Laflamme MA, Murry CE, Chien KR, Kelley RI, Church GM, Parker KK, Pu WT. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med. 2014;20:616–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Raval KK, Kamp TJ. Cardiomyopathy, mitochondria and Barth syndrome: iPSCs reveal a connection. Nat Med. 2014;20:585–6.

    Article  CAS  PubMed  Google Scholar 

  69. Sparagna GC, Chicco AJ, Murphy RC, Bristow MR, Johnson CA, Rees ML, Maxey ML, McCune SA, Moore RL. Loss of cardiac tetralinoleoyl cardiolipin in human and experimental heart failure. J Lipid Res. 2007;48:1559–70.

    Article  CAS  PubMed  Google Scholar 

  70. Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML, Schagger H. Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem. 2003;278:52873–80.

    Article  CAS  PubMed  Google Scholar 

  71. Schagger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J. 2000;19:1777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanley W, Sabbah HN, Hoppel CL. Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res. 2008;80:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bernardi P. The mitochondrial permeability transition pore: a mystery solved? Front Physiol. 2013;4:95. doi:10.3389/fphys.2013.00095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA, Tyurin VA, Yanamala N, Shrivastava IH, Mohammadyani D, Qiang Wang KZ, Zhu J, Klein-Seetharaman J, Balasubramanian K, Amoscato AA, Borisenko G, Huang Z, Gusdon AM, Cheikhi A, Steer EK, Wang R, Baty C, Watkins S, Bahar I, Bayir H, Kagan VE. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol. 2013;15:1197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hsu P, Liu X, Zhang J, Wang HG, Ye JM, Shi Y. Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy. Autophagy. 2015;11:643–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Karamanlidis G, Nascimben L, Couper GS, Shekar PS, del Monte F, Tian R. Defective DNA replication impairs mitochondrial biogenesis in human failing hearts. Circ Res. 2010;106:1541–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ahuja P, Wanagat J, Wang Z, Wang Y, Liem DA, Ping P, Antoshechkin IA, Margulies KB, Maclellan WR. Divergent mitochondrial biogenesis responses in human cardiomyopathy. Circulation. 2013;127:1957–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sebastiani M, Giordano C, Nediani C, Travaglini C, Borchi E, Zani M, Feccia M, Mancini M, Petrozza V, Cossarizza A, Gallo P, Taylor RW, d’Amati G. Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol. 2007;50:1362–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Authors acknowledge research funding supported from the National Health and Medical Research Council of Australia, the National Heart Foundation of Australia, the Royal Children’s Hospital 1000 Foundation, HeartKids Australia and the Victorian Government’s Operational Infrastructure Support Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Pepe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sheeran, F.L., Pepe, S. (2017). Mitochondrial Bioenergetics and Dysfunction in Failing Heart. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_4

Download citation

Publish with us

Policies and ethics