Skip to main content

Mitochondrial Transplantation in Myocardial Ischemia and Reperfusion Injury

  • Chapter
  • First Online:
Mitochondrial Dynamics in Cardiovascular Medicine

Abstract

Ischemic heart disease remains the leading cause of death worldwide. Mitochondria are the power plant of the cardiomyocyte, generating more than 95% of the cardiac ATP. Complex cellular responses to myocardial ischemia converge on mitochondrial malfunction which persists and increases after reperfusion, determining the extent of cellular viability and post-ischemic functional recovery. In a quest to ameliorate various points in pathways from mitochondrial damage to myocardial necrosis, exhaustive pharmacologic and genetic tools have targeted various mediators of ischemia and reperfusion injury and procedural techniques without applicable success. The new concept of replacing damaged mitochondria with healthy mitochondria at the onset of reperfusion by auto-transplantation is emerging not only as potential therapy of myocardial rescue, but as gateway to a deeper understanding of mitochondrial metabolism and function. In this chapter, we explore the mechanisms of mitochondrial dysfunction during ischemia and reperfusion, current developments in the methodology of mitochondrial transplantation, mechanisms of cardioprotection and their clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jiménez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Mackey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfighi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P, American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation. 2017;135:e146–e603.

    Google Scholar 

  2. Jennings RB, Reimer KA. Lethal myocardial ischemic injury. Am J Pathol. 1981;102:241–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Buja LM, Willerson JT. Abnormalities of volume regulation and membrane integrity in myocardial tissue slides after early ischemic injury in the dog: effects of mannitol, polyethylene glycol, and propranolol. Am J Pathol. 1981;103:79–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Santulli G, Nakashima R, Yuan Q, Marks AR. Intracellular calcium release channels: an update. J Physiol. 2017 (in press). doi: 10.1113/JP272781.

  5. Braunwald E, Kloner RA. Myocardial reperfusion: a double-edge sword? J Clin Invest. 1985;76:1713–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fassina L, Rozzi G, Rossi S, Scacchi S, Galetti M, Lo Muzio FP, Del Bianco F, Colli Franzone P, Petrilli G, Faggian G, Miragoli M. Cardiac kinematic parameters computed from video of in situ beating heart. Sci Rep. 2017;7:46143 doi:10.1038/srep46143.

  7. Kloner RA, Przyklenk K, Patel B. Altered myocardial states: the stunned and hibernating myocardium. Am J Med. 1989;86:14–22.

    Article  CAS  PubMed  Google Scholar 

  8. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    Article  CAS  PubMed  Google Scholar 

  9. Murry CE, Richard VJ, Reimer KA, Jennings RB. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res. 1990;66:913–31.

    Article  CAS  PubMed  Google Scholar 

  10. Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2003;285:H579–88.

    Article  CAS  PubMed  Google Scholar 

  11. Zhao ZQ, Vinten-Johansen J. Postconditioning: reduction of reperfusion-induced injury. Cardiovasc Res. 2006;70:200–11.

    Article  CAS  PubMed  Google Scholar 

  12. Cohen MV, Yang XM, Downey JM. The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis. Circulation. 2007;115:1895–903.

    Article  PubMed  Google Scholar 

  13. Kolwicz Jr SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth and survival of cardiomyocytes. Circ Res. 2013;113:603–16.

    Article  CAS  PubMed  Google Scholar 

  14. Carden DL, Granger DN. Pathophysiology of ischemia-reperfusion injury. J Pathol. 2000;190:255–66.

    Article  CAS  PubMed  Google Scholar 

  15. Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology. 2001;94:1133–8.

    Article  CAS  PubMed  Google Scholar 

  16. Turer AT, Hill JA. Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. Am J Cardiol. 2010;106:360–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007;357:1121–35.

    Article  CAS  PubMed  Google Scholar 

  18. Meerson FZ, Zaletayeva TA, Lagutchev SS, Pshennikova MG. Structure and mass of mitochondria in the process of compensatory hyperfunction and hypertrophy of the heart. Exp Cell Res. 1964;36:568–78.

    Article  CAS  PubMed  Google Scholar 

  19. Feinberg H, Levitsky S. Biochemical rationale of cardioplegia. In: Engelman RM, Levitsky S, editors. A textbook of clinical cardioplegia. Mt Kisco, New York: Futura; 1982. p. 131–9.

    Google Scholar 

  20. Palmer JW, Tandler B, Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977;252:8731–9.

    CAS  PubMed  Google Scholar 

  21. Weinstein ES, Benson DW, Fry ED. Subpopulations in human heart mitochondria. J Surg Res. 1986;40:495–8.

    Article  CAS  PubMed  Google Scholar 

  22. Dalen H, Odegarden S, Saetersdal T. The application of various electron microscopic techniques for ultrastructural characterization of the human papillary heart muscle cell in biopsy material. Virchows Arch A Pathol Anat Histopathol. 1987;410:265–79.

    Article  CAS  PubMed  Google Scholar 

  23. Shimada T, Horita K, Murakami M, Ogura R. Morphological studies of different mitochondrial populations in monkey myocardial cells. Cell Tissue Res. 1984;238:577–82.

    Article  CAS  PubMed  Google Scholar 

  24. Lukyanenko V, Chikando A, Lederer WJ. Mitochondria in cardiomyocyte Ca2+ signaling. Int J Biochem Cell Biol. 2009;41:1957–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Birkedal R, Shiels HA, Vendelin M. Three-dimensional mitochondrial arrangement in ventricular myocytes: from chaos to order. Am J Physiol Cell Physiol. 2006;291:C1148–58.

    Article  CAS  PubMed  Google Scholar 

  26. Hollander JM, Thapa D, Shepherd D. Physiological and structural differences in spatially distinct subpopulations of cardiac mitochondria. Am J Physiol Heart Circ Physiol. 2014;307:H1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Muller W. Subsarcolemmal mitochondria and capillarization of soleus muscle fibers in young rats subjected to an endurance training. A morphometric study of semithin sections. Cell Tissue Res. 1976;174:367–89.

    Article  CAS  PubMed  Google Scholar 

  28. Rosca MG, Hoppel CL. Mitochondrial dysfunction in heart failure. Heart Fail Rev. 2013;18:607–22.

    Article  CAS  PubMed  Google Scholar 

  29. Baseler WA, Thapa D, Jagannathan R, Dabkowski ER, Crsoton TL, Hollander JM. miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart. Am J Physiol Cell Physiol. 2012;303:C1244–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Croston TL, Shepherd DL, Thapa D, Nichols CE, Lewis SE, Dabkowski ER, Jagannathan R, Baseler WA, Hollander JM. Evaluation of the cardiolipin biosynthetic pathway and its interactions in the diabetic heart. Life Sci. 2013;93:313–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen Q, Moghaddas S, Hoppel CL, Lesnefsky EJ. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol. 2008;294:C460–6.

    Article  CAS  PubMed  Google Scholar 

  32. Lesnefsky EJ, Gudz TI, Migita CT, Ikeda-Saito M, Hassan MO, Turkaly PJ, Hoppel CL. Ischemic injury to mitochondrial electron transport in the aging heart: damage to the iron-sulfur protein subunit of electron transport complex III. Arch Biochem Biophys. 2001;385:117–28.

    Article  CAS  PubMed  Google Scholar 

  33. Lesnefsky EJ, Chen Q, Moghaddas S, Hassan MO, Tandler B, Hoppel CL. Blockade of electron transport chain during ischemia protects cardiac mitochondria. J Biol Chem. 2004;279:47961–7.

    Article  CAS  PubMed  Google Scholar 

  34. Rosca MG, Vazquez EJ, Kerner J, Parland W, Chandler MP, Stanely W, Sabbah HN, Hoppel CL. (2008)Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation. Cardiovasc Res. 2008;80:30–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dabkowski ER, Williamson CL, Hollander JM. Mitochondria-specific transgenic overexpression of phospholipid hydroperoxide glutathione peroxidase (GPx4) attenuates ischemia/reperfusion-associated cardiac dysfunction. Free Radic Biol Med. 2008;45:855–65.

    Article  CAS  PubMed  Google Scholar 

  36. Duan J, Karmazyn M. Relationship between oxidative phosphorylation and adenine nucleotide translocase activity of two populations of cardiac mitochondria and mechanical recovery of ischemic hearts following reperfusion. Can J Physiol Pharmacol. 1989;67:704–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lesnefsky EJ, Chen Q, Slabe TJ, Stoll MS, Minkler PE, Hassan MO, Tandler B, Hoppel CL. Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin. Am J Physiol Heart Circ Physiol. 2004;287:H258–67.

    Article  CAS  PubMed  Google Scholar 

  38. Kubler W, Spieckermann PG. Regulation of glycolysis in the ischemic and anoxic myocardium. J Mol Cell Cardiol. 1970;1:351–77.

    Article  CAS  PubMed  Google Scholar 

  39. Conway MA, Allis J, Ouwerkerk R, Niioka T, Rajagopalan B, Radda GK. Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy. Lancet. 1991;338:973–6.

    Article  CAS  PubMed  Google Scholar 

  40. Hardy CJ, Weiss RG, Bottomley PA, Gerstenblith G. Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. Am Heart J. 1991;112:795–801.

    Article  Google Scholar 

  41. Neubauer S, Krahe T, Schindler R, Horn M, Hillenbrand H, Entzeroth C, Mader H, Kromer EP, Riegger GA, Lackner K. 31P magnetic resonance spectroscopy in dilated cardiomyopathy and coronary artery disease. Altered cardiac high-energy phosphate metabolism in heart failure. Circulation. 1992;86:1810–8.

    Article  CAS  PubMed  Google Scholar 

  42. Neubauer S, Horn M, Cramer M, Harre K, Newell JB, Peters W, Pabst T, Ertl G, Hahn D, Ingwall JS, Kochsiek K. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation. 1997;96:2190–6.

    Article  CAS  PubMed  Google Scholar 

  43. Tsukube T, McCully JD, Metz KR, Cook CU, Levitsky S. Amelioration of ischemic calcium overload correlates with high-energy phosphates in the senescent myocardium. Am J Phys. 1997;273:H418–25.

    CAS  Google Scholar 

  44. Reimer KA, Lowe JE, Rasmussen MM, Jennings RB. The wavefront phenomenon of ischemic cell death: 1. Myocardial infarct size vs duration of coronary occlusion in dogs. Circulation. 1977;56:786–94.

    Article  CAS  PubMed  Google Scholar 

  45. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death: II. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Investig. 1979;40:633–44.

    CAS  PubMed  Google Scholar 

  46. Reimer KA, Jennings RB. Myocardial ischemia, hypoxia, and infarction. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, editors. The heart and cardiovascular system: scientific foundations, vol. II. 2nd ed. New York: Raven Press; 1992. p. 1875–973.

    Google Scholar 

  47. McCully JD, Levitsky S. Mitochondrial ATP-sensitive potassium channels in surgical cardioprotection. Arch Biochem Biophys. 2003;420:237–45.

    Article  CAS  PubMed  Google Scholar 

  48. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest. 1975;56:978–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gray R, Maddahi J, Bernan D, Raymond M, Waxman A, Ganz W, Matloff J, Swan HJ. Scintigraphic and hemodynamic demonstration of transient left ventricular dysfunction immediately after uncomplicated coronary artery bypass grafting. J Thorac Cardiovasc Surg. 1979;77:504–10.

    CAS  PubMed  Google Scholar 

  50. Kloner RA, Przyklenk K, Kay GL. Clinical evidence for stunned myocardium after coronary artery bypass surgery. J Card Surg. 1994;9:397–402.

    Article  CAS  PubMed  Google Scholar 

  51. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation. 1985;72:V123–35.

    Article  CAS  PubMed  Google Scholar 

  52. Buja LM, Vander Heide RS. Pathobiology of ischemic heart disease: past, present and future. Cardiovasc Pathol. 2016;25:214–20.

    Article  PubMed  Google Scholar 

  53. Chen C, Liu J, Hua D, Ma L, Lai T, Fallon JT, Knibbs D, Gillam L, Mangion J, Knight DR, Waters D. Impact of delayed reperfusion of myocardial hibernation on myocardial ultrastructure and function and their recoveries after reperfusion in a pig model of myocardial hibernation. Cardiovasc Pathol. 2000;9:67–84.

    Article  CAS  PubMed  Google Scholar 

  54. Lai T, Fallon JT, Liu J, Mangion J, Gillam L, Waters D, Chen C. Reversibility and pathohistological basis of left ventricular remodeling in hibernating myocardium. Cardiovasc Pathol. 2000;9:323–35.

    Article  CAS  PubMed  Google Scholar 

  55. Shah BN, Khattar RS, Senior R. The hibernating myocardium: current concepts, diagnostic dilemmas, and clinical challenges in the post-STICH era. Eur Heart J. 2013;34:1323–36.

    Article  CAS  PubMed  Google Scholar 

  56. Bax JJ, Schinkel AF, Boersma E, Rizzello V, Elhendy A, Maat A, Roelandt JR, van der Wall EE, Poldermans D. Early versus delayed revascularization in patients with ischemic cardiomyopathy and substantial viability: impact on outcome. Circulation. 2003;108:II39–42.

    Article  PubMed  Google Scholar 

  57. Beanlands RS, Hendry PJ, Masters RG, de Kemp RA, Woodend K, Ruddy TD. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation. 1998;98:II51–6.

    CAS  PubMed  Google Scholar 

  58. Vanoverschelde JL, Wijns W, Depre C, Essamri B, Heyndrickx GR, Borgers M, Bol A, Melin JA. Mechanisms of chronic regional postischemic dysfunction in humans. New insights from the study of noninfarcted collateral-dependent myocardium. Circulation. 1993;87:1513–23.

    Article  CAS  PubMed  Google Scholar 

  59. Kim SJ, Peppas A, Hong SK, Yang G, Huang Y, Diaz G, Sadoshima J, Vatner DE, Vatner SF. Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res. 2003;92:1233–9.

    Article  CAS  PubMed  Google Scholar 

  60. Borgers M, Ausma J. Structural aspects of the chronic hibernating myocardium in man. Basic Res Cardiol. 1995;90:44–6.

    CAS  PubMed  Google Scholar 

  61. Arai AE, Pantely GA, Anselone CG, Bristow J, Bristow JD. Active downregulation of myocardial energy requirements during prolonged moderate ischemia in swine. Circ Res. 1991;69:1458–69.

    Article  CAS  PubMed  Google Scholar 

  62. Schulz R, Rose J, Martin C, Brodde OE, Heusch G. Development of short-term myocardial hibernation. Its limitation by the severity of ischemia and inotropic stimulation. Circulation. 1993;88:684–95.

    Article  CAS  PubMed  Google Scholar 

  63. Rousou AJ, Ericsson M, Federman M, Levitsky S, McCully JD. Opening of mitochondrial KATP channels enhances cardioprotection through the modulation of mitochondrial matrix volume, calcium accumulation and respiration. Am J Physiol Heart Circ Physiol. 2004;287:H1967–76.

    Article  CAS  PubMed  Google Scholar 

  64. McCully JD, Rousou AJ, Parker RA, Levitsky S. Age and gender-related differences in mitochondrial oxygen consumption and calcium with cardioplegia and diazoxide. Ann Thorac Surg. 2007;83:1102–9.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Faulk EA, McCully JD, Hadlow NC, Tsukube T, Krukenkamp IB, Federman M, Levitsky S. Magnesium cardioplegia enhances mRNA levels and the maximal velocity of cytochrome oxidase I in the senescent myocardium during global ischemia. Circulation. 1995;92:II405–12.

    Article  CAS  PubMed  Google Scholar 

  66. Walker CA, Crawford Jr FA, Spinale FG. Myoctye contractile dysfunction with hypertrophy and failure: relevance to cardiac surgery. J Thorac Cardiovasc Surg. 2000;119:388–400.

    Article  CAS  PubMed  Google Scholar 

  67. Khabbaz KR, Zankoul F, Warner KG. Operative metabolic monitoring of the heart II. Online measurement of myocardial tissue pH. Ann Thorac Surg. 2001;72:S2227–33.

    Article  CAS  PubMed  Google Scholar 

  68. Karmazyn M. The role of the myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury. Keio J Med. 1998;47:65–72.

    Article  CAS  PubMed  Google Scholar 

  69. Kaplan P, Hendrikx M, Mattheussen M, Mubagwa K, Flameng W. Effect of ischemia and reperfusion on sarcoplasmic reticulum calcium uptake. Circ Res. 1992;71:1123–30.

    Article  CAS  PubMed  Google Scholar 

  70. Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112:11389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Frolkis VV, Frolkis RA, Mkhitarian LS, Shevchuk VG, Fraifeld VE, Vakulenko LG, Syrovy I. Contractile function and Ca2+ transport system of myocardium in ageing. Gerontology. 1988;34:64–74.

    Article  CAS  PubMed  Google Scholar 

  72. Peng CF, Kane JJ, Murphy ML, Straub KD. Abnormal mitochondrial oxidative phosphorylation of ischemic myocardium by calcium chelating agents. J Mol Cell Cardiol. 1977;9:897–908.

    Article  CAS  PubMed  Google Scholar 

  73. Suleiman MS, Halestrap AP, Griffiths EJ. Mitochondria: a target for myocardial protection. Pharmacol Ther. 2001;89:29–46.

    Article  CAS  PubMed  Google Scholar 

  74. Ozcan C, Holmuhamedov EL, Jahangir A, Terzic A. Diazoxide protects mitochondria from anoxic injury: implication for myopreservation. J Thorac Cardiovasc Surg. 2001;121:298–306.

    Article  CAS  PubMed  Google Scholar 

  75. Garlid KD. Opening mitochondrial K(ATP) in the heart-what happens, and what does not happen. Basic Res Cardiol. 2000;95:275–9.

    Article  CAS  PubMed  Google Scholar 

  76. Steenbergen C, Murphy E, Watts JA, London RE. Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circ Res. 1990;66:135–46.

    Article  CAS  PubMed  Google Scholar 

  77. Ataka K, Chen D, Levitsky S, Jimenez E, Feinberg H. Effect of aging on intracellular Ca2+, pHi, and contractility during ischemia and reperfusion. Circulation. 1992;86:II371–6.

    CAS  PubMed  Google Scholar 

  78. Tsukube T, McCully JD, Faulk EA, Federman M, LoCicero 3rd J, Krukenkamp IB, Levitsky S. Magnesium cardioplegia reduces cytosolic and nuclear calcium and DNA fragmentation in the senescent myocardium. Ann Thorac Surg. 1994;58:1005–11.

    Article  CAS  PubMed  Google Scholar 

  79. Hearse DJ, Garlick PB, Humphrey SM. Ischemic contracture of the myocardium: mechanism and prevention. Am J Cardiol. 1977;39:986–93.

    Article  CAS  PubMed  Google Scholar 

  80. Hearse DJ, Stewart DA, Braimbridge MV. Myocardial protection during ischemic cardiac arrest: the importance of magnesium in cardioplegic infusates. J Thorac Cardiovasc Surg. 1978;75:877–85.

    CAS  PubMed  Google Scholar 

  81. Faulk EA, McCully JD, Tsukube T, Hadlow NC, Krukenkamp IB, Levitsky S. Myocardial mitochondrial calcium accumulation modulates nuclear calcium accumulation and DNA fragmentation. Ann Thorac Surg. 1995;60:338–44.

    Article  CAS  PubMed  Google Scholar 

  82. McCully JD, Wakiyama H, Cowan DB, Federman M, Levitsky S. Diazoxide amelioration of myocardial injury and mitochondrial damage during cardiac surgery. Ann Thorac Surg. 2002;74:2138–45.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wakiyama H, Cowan DB, Toyoda Y, Federman M, Levitsky S, McCully JD. Selective opening of mitochondrial ATP-sensitive potassium channels during surgically induced myocardial ischemia increases necrosis and apoptosis. Eur J Cardiothorac Surg. 2002;21:424–33.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Halestrap AP, Kerr PM, Javadov S, Suleiman S. The mitochondrial permeability transition: role in ischemia/reperfusion injury. Sepsis. 1998;2:313–25.

    Google Scholar 

  85. Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A. Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Phys. 1998;275:H1567–76.

    CAS  Google Scholar 

  86. Holmuhamedov EL, Wang L, Terzic A. ATP-sensitive K+ channel openers prevent CA2+ overload in rat cardiac mitochondria. J Physiol. 1999;519:347–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Murata M, Akao M, O’Rourke B, Marban E. Mitochondrial ATP-sensitive potassium channels attenuate matrix CA2+ overload during stimulated ischemia and reperfusion: possible mechanism of cardioprotection. Circ Res. 2001;89:891–8.

    Article  CAS  PubMed  Google Scholar 

  88. Jennings RB, Sommers HM, Smyth GA, Flack HA, Linn H. Myocardial necrosis induced by temporary occlusion of a coronary artery in the dog. Arch Pathol. 1960;70:68–78.

    CAS  PubMed  Google Scholar 

  89. Ito H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat Clin Pract Cardiovasc Med. 2006;499:506.

    Google Scholar 

  90. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol. 2005;14:170–5.

    Article  CAS  PubMed  Google Scholar 

  91. Gross GJ, Auchampach JA. Reperfusion injury: does it exist? J Mol Cell Cardiol. 2007;42:12–8.

    Article  CAS  PubMed  Google Scholar 

  92. Barry MC, Kelly C, Burke P, Sheehan S, Redmond HP, Bouchier-Hayes D. Immunological and physiological responses to aortic surgery: effect of reperfusion on neutrophil and monocyte activation and pulmonary function. Br J Surg. 1997;84:513–9.

    Article  CAS  PubMed  Google Scholar 

  93. Pan X, Liu J, Nguyen T, Liu C, Sun J, Teng Y, Fergusson MM, Rovira II, Allen M, Springer DA, Aponte AM, Gucek M, Balaban RS, Murphy E, Finkel T. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol. 2013;15:1464–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Arroyo CM, Kramer JH, Dickens BF, Weglicki WB. Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO. FEBS Lett. 1987;221:101–4.

    Article  CAS  PubMed  Google Scholar 

  95. Ferrari R, Alfieri O, Curello S, Ceconi C, Cargnoni A, Marzollo P, Pardini A, Caradonna E, Visioli O. Occurrence of oxidative stress during reperfusion of the human heart. Circulation. 1990;81:201–11.

    Article  CAS  PubMed  Google Scholar 

  96. Pacher P, Nivorozhkin A, Szabó C. (2006)Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58:87–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chouchani ET, Pell VR, Guade E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord EN, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa AS, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T, Murphy MP. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515:431–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ashrafian H, Czibik G, Bellahcene M, Aksentijevic D, Smith AC, Mitchell SJ, Dodd MS, Kirwan J, Byrne JJ, Ludwig C, Isackson H, Yavari A, Stottrup NB, Contractor H, Cahill TJ, Sahgal N, Ball DR, Birkler RI, Hargreaves I, Tennant DA, Land J, Lygate CA, Johannsen M, Kharbanda RK, Neubauer S, Redwood C, de Cabo R, Ahmet I, Talan M, Günther UL, Robinson AJ, Viant MR, Pollard PJ, Tyler DJ, Watkins H. Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab. 2012;15:361–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417:1–3.

    Article  CAS  PubMed  Google Scholar 

  100. Chouchani ET, Methner C, Nadtochiy SM, Logan A, Pell VR, Ding S, James AM, Cochemé HM, Reinhold J, Lilley KS, Partridge L, Fearnley IM, Robinson AJ, Hartley RC, Smith RA, Krieg T, Brookes PS, Murphy MP. Cardioprotection by S-nitrosation of cysteine switch on mitochondrial complex I. Nat Med. 2013;19:753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Stewart S, Lesnefsky EJ, Chen Q. Reversible blockade of electron transport chain with amobarbital at the onset of reperfusion attenuates cardiac injury. Transl Res. 2009;153:224–31.

    Article  CAS  PubMed  Google Scholar 

  102. Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J. 2006;394:627–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Methner C, Chouchani ET, Buonincontri G, Pell VR, Sawiak SJ, Murphy MP, Krieg T. Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. Eur J Heart Fail. 2014;16:712–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zweier JL, Talukder MA. The role of oxidants and free radicals in reperfusion injury. Cardiovasc Res. 2006;70:181–90.

    Article  CAS  PubMed  Google Scholar 

  105. Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341:233–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion- a target for cardioprotection. Cardiovasc Res. 2004;61:372–85.

    Article  CAS  PubMed  Google Scholar 

  107. McCully JD, Bhasin MK, Daly C, Guerrero MC, Dillon S, Liberman TA, Cowan DB, Mably JD, McGowan FX, Levitsky S. Transcriptomic and proteomic analysis of global ischemia and cardioprotection in the rabbit heart. Physiol Genomics. 2009;38:125–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Klein HH, Pich S, Lindert S, Nebendahl K, Warneke G, Kreuzer H. Treatment of reperfusion injury with intracoronary calcium channel antagonists and reduced coronary free calcium concentration in regionally ischemic, reperfused porcine hearts. J Am Coll Cardiol. 1989;13:1395–401.

    Article  CAS  PubMed  Google Scholar 

  109. Carry MM, Mrak RE, Murphy ML, Peng CF, Straub KD, Fody EP. Reperfusion injury in ischemic myocardium: protective effects of ruthenium red and of nitroprusside. Am J Cardiovasc Pathol. 1989;2:335–44.

    CAS  PubMed  Google Scholar 

  110. Gumina RJ, Buerger E, Eickmeier C, Moore J, Daemmgen J, Gross GJ. Inhibition of the Na+/H+ exchanger confers greater cardioprotection against 90 minutes of myocardial ischemia than ischemic preconditioning in dogs. Circulation. 1999;100:2519–26.

    Article  CAS  PubMed  Google Scholar 

  111. Boden WE, van Gilst W, Scheldewaert RG, Starkey IR, Carlier MF, Julian DG, Whitehead A, Bertrand ME, Col JJ, Pedersen OL, Lie KI, Santoni JP, Fox KM. Diltiazem in acute myocardial infarction treated with thrombolytic agents: a randomized placebo-controlled trial. Incomplete Infarction Trial of European Research Collaborators Evaluating Prognosis post-Thrombolysis (INTERCEPT). Lancet. 2000;355:1751–6.

    Article  CAS  PubMed  Google Scholar 

  112. Théroux P, Chaitman BR, Danchin N, Erhardt L, Meinertz T, Schroeder JS, Tognoni G, White HD, Willerson JT, Jessel A. (2000)Inhibition of the sodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis (GUARDIAN) investigators. Circulation. 2000;102:3032–8.

    Article  PubMed  Google Scholar 

  113. Zeymer U, Suryapranata H, Monassier JP, Opolski G, Davies J, Rasmanis G, Linssen G, Tebbe U, Schröder R, Tiemann R, Machnig T, Neuhaus KL, ESCAMI Investigators. The Na(+)/H(+) exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. Results of the evaluation of the safety and cardioprotective effects of eniporide in acute myocardial infarction (ESCAMI) trial. J Am Coll Cardiol. 2001;38:1644–50.

    Article  CAS  PubMed  Google Scholar 

  114. Flaherty JT, Pitt B, Gruber JW, Heuser RR, Rothbaum DA, Burwell LR, George BS, Kereiakes DJ, Deitchman D, Gustafson N. Recombinant human superoxide dismutase (h-SOD) fails to improve recovery of ventricular function in patients undergoing coronary angioplasty for acute myocardial infarction. Circulation. 1994;89:1982–91.

    Article  CAS  PubMed  Google Scholar 

  115. Downey JM. Free radicals and their involvement during long-term myocardial ischemia and reperfusion. Annu Rev Physiol. 1990;52:487–504.

    Article  CAS  PubMed  Google Scholar 

  116. Sesso HD, Buring JE, Christen WG, Kurth T, Belanger C, MacFadyen J, Manson JE, Glynn RJ, Gaziano JM. Vitamins E and C in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA. 2008;300:2123–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Litt MR, Jeremy RW, Weisman HF, Winkelstein JA, Becker LC. Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia: evidence for neutrophil-mediated reperfusion injury. Circulation. 1989;80:1816–27.

    Article  CAS  PubMed  Google Scholar 

  118. Hayward R, Campbell B, Shin YK, Scalia R, Lefer AM. Recombinant soluble P-selectin glycoprotein ligand-1 protects against myocardial ischemic reperfusion injury in cats. Cardiovasc Res. 1999;41:65–76.

    Article  CAS  PubMed  Google Scholar 

  119. Vakeva AP, Agah A, Rollins SA, Matis LA, Li L, Stahl GL. Myocardial infarction and apoptosis after myocardial ischemia and reperfusion: role of the terminal complement components and inhibition by anti-C5 therapy. Circulation. 1998;97:2259–67.

    Article  CAS  PubMed  Google Scholar 

  120. Baran KW, Nguyen M, McKendall GR, Lambrew CT, Dykstra G, Palmeri ST, Gibbons RJ, Borzak S, Sobel BE, Gourlay SG, Rundle AC, Gibson CM, Barron HV, Limitation of Myocardial Infarction Following Thrombolysis in Acute Myocardial Infarction (LIMIT AMI) Study Group. Double-blind, randomized trial of anti-CD18 antibody in conjunction with recombinant tissue plasminogen activator for acute myocardial infarction: limitation of myocardial infarction following thrombolysis in acute myocardial infarction (LIMIT AMI) study. Circulation. 2001;104:2778–83.

    Article  CAS  PubMed  Google Scholar 

  121. Faxon DP, Gibbons RJ, Chronos NA, Gurbel PA, Sheehan F, HALT-MI Investigators. The effect of blockade of the CD11/CD18 integrin receptor on infarct size in patients with acute myocardial infarction treated with direct angioplasty: the results of the HALT-MI study. J Am Coll Cardiol. 2002;40:1199–204.

    Article  CAS  PubMed  Google Scholar 

  122. Mertens P, Maes A, Nuyts J, Belmans A, Desmet W, Esplugas E, Charlier F, Figueras J, Sambuceti G, Schwaiger M, Mortelmans L, Van de Werf F, PSALM investigators. Recombinant P-selectin glycoprotein ligand-immunoglobulin, a P-selectin antagonist, as an adjunct to thrombolysis in acute myocardial infarction. The P-Selectin Antagonist Limiting Myonecrosis (PSALM) trial. Am Heart J. 2006;152:125.e1–8.

    Article  CAS  Google Scholar 

  123. Mahaffey KW, Granger CB, Nicolau JC, Ruzyllo W, Weaver WD, Theroux P, Hochman JS, Filloon TG, Mojcik CF, Todaro TG, Armstrong PW, COMPLY Investigators. Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPlement inhibition in myocardial infarction treated with thromboLYtics (COMPLY) trial. Circulation. 2003;108:1176–83.

    Article  CAS  PubMed  Google Scholar 

  124. Granger CB, Mahaffey KW, Weaver WD, Theroux P, Hochman JS, Filloon TG, Rollins S, Todaro TG, Nicolau JC, Ruzyllo W, Armstrong PW, COMMA Investigators. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: the COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation. 2003;108:1184–90.

    Article  CAS  PubMed  Google Scholar 

  125. McCully JD, Cowan DB, Pacak CA, Toumpoulis IK, Dayalan H, Levitsky S. Injection of isolated mitochondria during early reperfusion for cardioprotection. Am J Physiol Heart Circ Physiol. 2009;296:H94–H105.

    Article  CAS  PubMed  Google Scholar 

  126. Masuzawa A, Black KM, Pacak CA, Ericsson M, Barnett RJ, Drumm C, Seth P, Bloch DB, Levitsky S, Cowan DB, McCully JD. Transplantation of autologously-derived mitochondria protects the heart from ischemia-reperfusion injury. Am J Phys Heart Circ Physiol. 2013;304:H966–82.

    Article  CAS  Google Scholar 

  127. Cowan DB, Yao R, Akurathi V, Snay ER, Thedsanamoorthy JK, Zurakowski D, Ericsson M, Friehs I, Wu Y, Levitsky S, Del Nido PJ, Packard AB, McCully JD. Intracoronary delivery of mitochondria to the ischemic heart for cardioprotection. PLoS ONE. 2016;11:e0160889.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Bolling SF, Le B, Bove EL. Effect of ATP synthesis promoters on postischemic myocardial recovery. J Surg Res. 1990;49:205–11.

    Article  CAS  PubMed  Google Scholar 

  129. Preble JM, Pacak CA, Kondo H, MacKay AA, Cowan DB, McCully JD. Rapid isolation and purification of mitochondria for transplantation by tissue dissociation and differential filtration. J Vis Exp. 2014;91:e51682. doi:10.3791/51682.

    Google Scholar 

  130. Preble JM, Kondo H, Levitsky S, McCully JD. Quality control parameters for mitochondria transplant in cardiac tissue. JSM Biochem Mol Biol. 2014;2:1008.

    Google Scholar 

  131. Pacak AP, Preble JM, Kondo H, Seibel P, Levitsky S, Del Nido PJ, Cowan DB, McCully JD. Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function. Biol Open. 2015;4:622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pfeiffer ER, Wright AT, Edwards AG, Stowe JC, McNall K, Tan J, Niesman I, Patel HH, Roth DM, Omens JH, McCulloch AD. Caveolae in ventricular myocytes are required for stretch-dependent conduction slowing. J Mol Cell Cardiol. 2014;76:265–74.

    Article  CAS  PubMed  Google Scholar 

  133. Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y, Dogan Y, Gholami S, Moreira AL, Manova-Todorova K, Moore MA. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLoS ONE. 2012;7(3):e33093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kitani T, Kami D, Matoba S, Gojo S. Internalization of isolated functional mitochondria: involvement of micropinocytosis. J Cell Mol Med. 2014;18:1694–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Huang X, Sun L, Ji S, Zhao T, Zhang W, Xu J, Zhang J, Wang Y, Wang X, Franzini-Armstrong C, Zheng M, Cheng H. Kissing and nanotunneling mediate intermitochondrial communication in the heart. Proc Natl Acad Sci U S A. 2013;110(8):2846–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Stark G, Domanowits H, Sterz F, Startk U, Bachernegg M, Kickenweiz E, Decrinis M, Laggner AN, Tritthart HA. Action of ATP on ventricular automaticity. J Cardiovasc Pharmacol. 1994;24:740–4.

    Article  CAS  PubMed  Google Scholar 

  137. Piel DA, Gruber PJ, Weinheimer CJ, Courtois MR, Robertson CM, Coopersmith CM, Deutschman CS, Levy RJ. Mitochondrial resuscitation with exogenous cytochrome c in the septic heart. Crit Care Med. 2007;35:2120–7.

    Article  CAS  PubMed  Google Scholar 

  138. Pepe S, Marasco SF, Haaas SJ, Sheeran FL, Krum H, Rosenfeldt FL. Coenzyme Q10 in cardiovascular disease. Mitochondrion. 2007;7(Suppl):S154–67.

    Article  CAS  PubMed  Google Scholar 

  139. Lorita J, Soley M, Ramirez I. Epidermal growth factor protects the heart against low-flow ischemia-induced injury. J Phys Biochem. 2012;66:55–62.

    Article  CAS  Google Scholar 

  140. Roche S, D’lppolito G, Gomez LA, Bouckenooghe T, Lehmann S, Monteromenei CN, Schiller PC. Comparative analysis of protein expression of three stem cell populations: models of cytokine delivery system in vivo. Int J Pharm. 2012; doi:10.1016/j.ijpharm.2011.12.041.

    Google Scholar 

  141. Kocher AA, Schuster MD, Bonaros N, Lietz K, Xiang G, Martens TP, Kurlansky PA, Sondermeijer H, Witkowski P, Boyle A, Homma S, Wang SF, Itescu S. Myocardial homing and neovascularization by human bone marrow blasts is regulated by IL-8/Gro CXC chemochines. J Mol Cell Cardiol. 2006;40:455–64.

    Article  CAS  PubMed  Google Scholar 

  142. Emani SM, Piekarski BL, Baird C, Kaza A, Harrild D, del Nido PJ, McCully JD. Autologous mitochondria transplantation by ventricular dysfunction following myocardial ischemia-reperfusion injury. (personal communication). n.d.

    Google Scholar 

  143. Chang JC, Wu SL, Liu KH, Chen YH, Chuang CS, Cheng FC, Su HL, Wei YH, Kuo SJ, Liu CS. Allogenic/xenogenic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine-induced neurotoxicity. Transl Res. 2016;170:40–56.

    Article  CAS  PubMed  Google Scholar 

  144. Lin HC, Liu SY, Lai HS, Lai IR. Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock. 2013;39:304–10.

    Article  CAS  PubMed  Google Scholar 

  145. Zhu L, Zhang J, Zhou J, Lu Y, Huang S, Xiao R, Yu X, Zeng X, Liu B, Liu F, Sun M, Dai M, Hao Q, Li J, Wang T, Li T, Lu Q. Mitochondrial transplantation attenuates hypoxic pulmonary hypertension. Oncotarget. 2016; doi:10.18632/oncotarget.10596.

    Google Scholar 

  146. Hayakawa K, Esposito E, Wang X, Terasaki Y, Liu Y, Xing C, Ji X, Lo EH. Transfer of mitochondria from astrocytes to neurons after stroke. Nature. 2016;535:551–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments 

This work was supported by: The Richard A. and Susan F. Smith Foundation, President’s Innovation Award, Boston Children’s Hospital, Michael B. Klein and Family, the Sidman Family Foundation, the Bulens/Capozzi Foundation, the Boston Children’s Hospital Anesthesia Foundation, the Kenneth C. Griffin Charitable Research Fund and the Boston Investment Council. This work in part was funded by NIH 5T32HL007734 fellowship to Dr. Shin.

Disclosures 

Dr. McCully, Dr. Cowan and Dr. del Nido have patents pending for the isolation and usage of mitochondria. There are no other conflicts of interest by any of the authors. The authors attest they had full freedom to explore the data, analyze the results independent from any sponsor and that they had sole authority to make the final decision to submit the material for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. McCully PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shin, B., Cowan, D.B., Emani, S.M., del Nido, P.J., McCully, J.D. (2017). Mitochondrial Transplantation in Myocardial Ischemia and Reperfusion Injury. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_31

Download citation

Publish with us

Policies and ethics