Skip to main content

Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders

  • Chapter
  • First Online:
Mitochondrial Dynamics in Cardiovascular Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 982))

Abstract

Mitochondrial dynamics play a critical role in cellular responses and physiological process. However, their dysregulation leads to a functional degradation, which results in a diverse array of common disorders, including cardiovascular disease. In this background, the mitochondrial ubiquitin ligase has been attracting substantial research interest in recent years. Mitochondrial ubiquitin ligase is localized in the mitochondrial outer membrane, where it plays an essential role in the regulation of mitochondrial dynamics and apoptosis. In this chapter, we provide a comprehensive overview of the functions of mitochondrial ubiquitin ligases identified hitherto, with a special focus on cardiovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henze K, Martin W. Evolutionary biology: essence of mitochondria. Nature. 2003;426:127–8.

    Article  CAS  PubMed  Google Scholar 

  2. Yaffe MP. Dynamic mitochondria. Nat Cell Biol. 1999;1:E149–50.

    Article  CAS  PubMed  Google Scholar 

  3. Griparic L, van der Bliek AM. The many shapes of mitochondrial membranes. Traffic. 2001;2:235–44.

    Article  CAS  PubMed  Google Scholar 

  4. Jensen RE, Hobbs AE, Cerveny KL, Sesaki H. Yeast mitochondrial dynamics: fusion, division, segregation, and shape. Microsc Res Tech. 2000;51:573–83.

    Article  CAS  PubMed  Google Scholar 

  5. Shaw JM, Nunnari J. Mitochondrial dynamics and division in budding yeast. Trends Cell Biol. 2002;12:178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie W, Santulli G, Reiken SR, Yuan Q, Osborne BW, Chen BX, Marks AR. Mitochondrial oxidative stress promotes atrial fibrillation. Sci Rep. 2015;5:11427.

    Google Scholar 

  7. Santulli G, Xie W, Reiken SR, Marks AR. Mitochondrial calcium overload is a key determinant in heart failure. Proc Natl Acad Sci U S A. 2015;112:11389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hershko A, Ciechanover A. The ubiquitin system for protein degradation. Annu Rev Biochem. 1992;61:761–807.

    Article  CAS  PubMed  Google Scholar 

  9. Zungu M, Schisler JC, Essop MF, McCudden C, Patterson C, Willis MS. Regulation of AMPK by the ubiquitin proteasome system. Am J Pathol. 2011;178:4–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pickart CM, Eddins MJ. Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. 1695;2004:55–72.

    Google Scholar 

  11. Livnat-Levanon N, Glickman MH. Ubiquitin-proteasome system and mitochondria – reciprocity. Biochim Biophys Acta. 2011;1809:80–7.

    Article  CAS  PubMed  Google Scholar 

  12. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–79.

    Article  CAS  PubMed  Google Scholar 

  13. Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y, Ohmura-Hoshino M, Sada K, Hotta H, Yamamura H, Inatome R, Yanagi S. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006;25:3618–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nagashima S, Yanagi S. Role of MITOL in mitochondrial dynamics and diseases. Seikagaku J Jpn Biochem Soc. 2014;86:63–7.

    CAS  Google Scholar 

  15. Wang J, Aung LH, Prabhakar BS, Li P. The mitochondrial ubiquitin ligase plays an anti-apoptotic role in cardiomyocytes by regulating mitochondrial fission. J Cell Mol Med. 2016;20:2278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nagashima S, Tokuyama T, Yonashiro R, Inatome R, Yanagi S. Roles of mitochondrial ubiquitin ligase MITOL/MARCH5 in mitochondrial dynamics and diseases. J Biochem. 2014;155:273–9.

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura N, Kimura Y, Tokuda M, Honda S, Hirose S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006;7:1019–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Karbowski M, Neutzner A, Youle RJ. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol. 2007;178:71–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. James TN. Normal and abnormal consequences of apoptosis in the human heart. From postnatal morphogenesis to paroxysmal arrhythmias. Circulation. 1994;90:556–73.

    Article  CAS  PubMed  Google Scholar 

  20. Liu W, Wang X, Mei Z, Gong J, Gao X, Zhao Y, Ma J, Xie F, Qian L. Chronic stress promotes the progression of pressure overload-induced cardiac dysfunction through inducing more apoptosis and fibrosis. Physiol Res. 2015;64:325–34.

    CAS  PubMed  Google Scholar 

  21. Suen DF, Norris KL, Youle RJ. Mitochondrial dynamics and apoptosis. Genes Dev. 2008;22:1577–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fusco A, Santulli G, Sorriento D, Cipolletta E, Garbi C, Dorn GW 2nd, Trimarco B, Feliciello A, Iaccarino G. Mitochondrial localization unveils a novel role for GRK2 in organelle biogenesis. Cell Signal. 2012;24:468–75.

    Google Scholar 

  23. Hashimoto M, Rockenstein E, Crews L, Masliah E. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neruomol Med. 2003;4:21–36.

    Article  CAS  Google Scholar 

  24. Yonashiro R, Sugiura A, Miyachi M, Fukuda T, Matsushita N, Inatome R, Ogata Y, Suzuki T, Dohmae N, Yanagi S. Mitochondrial ubiquitin ligase MITOL ubiquitinates mutant SOD1 and attenuates mutant SOD1-induced reactive oxygen species generation. Mol Biol Cell. 2009;20:4524–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koshiba T, Detmer SA, Kaiser JT, Chen H, McCaffery JM, Chan DC. Structural basis of mitochondrial tethering by mitofusin complexes. Science. 2004;305:858–62.

    Article  CAS  PubMed  Google Scholar 

  26. Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. J Cell Sci. 2001;114:867–74.

    CAS  PubMed  Google Scholar 

  27. Kim HJ, Nagano Y, Choi SJ, Park SY, Kim H, Yao TP, Lee JY. HDAC6 maintains mitochondrial connectivity under hypoxic stress by suppressing MARCH5/MITOL dependent MFN2 degradation. Biochem Biophys Res Commun. 2015;464:1235–40.

    Article  CAS  PubMed  Google Scholar 

  28. Sugiura A, Nagashima S, Tokuyama T, Amo T, Matsuki Y, Ishido S, Kudo Y, McBride HM, Fukuda T, Matsushita N, Inatome R, Yanagi S. MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin 2. Mol Cell. 2013;51:20–34.

    Article  CAS  PubMed  Google Scholar 

  29. Lee JY, Kapur M, Li M, Choi MC, Choi S, Kim HJ, Kim I, Lee E, Taylor JP, Yao TP. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J Cell Sci. 2014;127:4954–63.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Park YY, Nguyen OT, Kang H, Cho H. MARCH5-mediated quality control on acetylated Mfn1 facilitates mitochondrial homeostasis and cell survival. Cell Death Dis. 2014;5:e1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tacchi L, Casadei E, Bickerdike R, Secombes CJ, Martin SA. Cloning and expression analysis of the mitochondrial ubiquitin ligase activator of NF-kappaB (MULAN) in Atlantic salmon (Salmo salar). Mol Immunol. 2011;49:558–65.

    Article  CAS  PubMed  Google Scholar 

  32. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA, Orth A, Chanda SK, Batalov S, Joazeiro CA. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One. 2008;3:e1487.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Karin M, Cao Y, Greten FR, Li ZW. NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer. 2002;2:301–10.

    Article  CAS  PubMed  Google Scholar 

  34. Fujita H, Aratani S, Fujii R, Yamano Y, Yagishita N, Araya N, Izumi T, Azakami K, Hasegawa D, Nishioka K, Nakajima T. Mitochondrial ubiquitin ligase activator of NF-kappaB regulates NF-kappaB signaling in cells subjected to ER stress. Int J Mol Med. 2016;37:1611–8.

    CAS  PubMed  Google Scholar 

  35. Zemirli N, Pourcelot M, Ambroise G, Hatchi E, Vazquez A, Arnoult D. Mitochondrial hyperfusion promotes NF-kappaB activation via the mitochondrial E3 ligase MULAN. FEBS J. 2014;281:3095–112.

    Article  CAS  PubMed  Google Scholar 

  36. Sitia R, Braakman I. Quality control in the endoplasmic reticulum protein factory. Nature. 2003;426:891–4.

    Article  CAS  PubMed  Google Scholar 

  37. Franke TF. PI3K/Akt: getting it right matters. Oncogene. 2008;27:6473–88.

    Article  CAS  PubMed  Google Scholar 

  38. Bae S, Kim SY, Jung JH, Yoon Y, Cha HJ, Lee H, Kim K, Kim J, An IS, Kim J, Um HD, Park IC, Lee SJ, Nam SY, Jin YW, Lee JH, An S. Akt is negatively regulated by the MULAN E3 ligase. Cell Res. 2012;22:873–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ambivero CT, Cilenti L, Main S, Zervos AS. Mulan E3 ubiquitin ligase interacts with multiple E2 conjugating enzymes and participates in mitophagy by recruiting GABARAP. Cell Signal. 2014;26:2921–9.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang B, Huang J, Li HL, Liu T, Wang YY, Waterman P, Mao AP, Xu LG, Zhai Z, Liu D, Marrack P, Shu HB. GIDE is a mitochondrial E3 ubiquitin ligase that induces apoptosis and slows growth. Cell Res. 2008;18:900–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martins LM, Morrison A, Klupsch K, Fedele V, Moisoi N, Teismann P, Abuin A, Grau E, Geppert M, Livi GP, Creasy CL, Martin A, Hargreaves I, Heales SJ, Okada H, Brandner S, Schulz JB, Mak T, Downward J. Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol Cell Biol. 2004;24:9848–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cilenti L, Ambivero CT, Ward N, Alnemri ES, Germain D, Zervos AS. Inactivation of Omi/HtrA2 protease leads to the deregulation of mitochondrial Mulan E3 ubiquitin ligase and increased mitophagy. Biochim Biophys Acta. 1843;2014:1295–307.

    Google Scholar 

  43. Deng Y, Ren X, Yang L, Lin Y, Wu X. A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell. 2003;115:61–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-feng Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, T., Zhang, Y., Li, Pf. (2017). Mitochondrial Ubiquitin Ligase in Cardiovascular Disorders. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_17

Download citation

Publish with us

Policies and ethics