Skip to main content

Functional Role of Nox4 in Autophagy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 982))

Abstract

Accumulating lines of evidence suggest that reactive oxygen species (ROS) may act as intracellular signaling molecules under cellular stress conditions, activating several molecular pathways. Autophagy, the intracellular mechanism by which cells digest and recycle unfolded proteins and dysfunctional organelles, is emerging as a major target of ROS and NADPH oxidase (Nox) enzymes, the major generators of ROS. While autophagy represents an important self-defense mechanism in promoting cell survival, it may be maladaptive in some conditions. In particular, in the cardiovascular system, moderate activation of autophagy has been shown to be protective, while excessive or insufficient activation of autophagy may be deleterious. Thus, modulating ROS-dependent autophagy may represent a novel strategy to keep autophagy within the therapeutic range. Among the Nox isoforms, Nox4 in particular plays a pivotal role in autophagy regulation. This appears to be due to its intracellular localization and its ability to produce hydrogen peroxide, a stable signaling molecule. In this chapter we review the studies relating to the functional role of Nox4 in autophagy, with particular emphasis on the heart and cardiovascular system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bedard K, Krause K-H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.

    Article  CAS  PubMed  Google Scholar 

  2. Lassègue B, San Martín A, Griendling KK. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ Res. 2012;110:1364–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004;4(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  4. Leto TL, Morand S, Hurt D, Ueyama T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal. 2009;11(10):2607–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Maejima Y, Kuroda J, Matsushima S, Ago T, Sadoshima J. Regulation of myocardial growth and death by NADPH oxidase. J Mol Cell Cardiol. 2011;50:408–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lassègue B, Griendling KK. NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol. 2010;30:653–61.

    Article  PubMed  CAS  Google Scholar 

  7. Li JM, Shah AM. Mechanism of endothelial cell NADPH oxidase activation by angiotensin II: role of the p47phox subunit. J Biol Chem. 2003;278(14):12094–100.

    Article  CAS  PubMed  Google Scholar 

  8. Frey RS, Rahman A, Kefer JC, Minshall RD, Malik AB. PKCzeta regulates TNF-alpha-induced activation of NADPH oxidase in endothelial cells. Circ Res. 2002;90(9):1012–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hwang J, Ing MH, Salazar A, Lassègue B, Griendling K, Navab M, et al. Pulsatile versus oscillatory shear stress regulates NADPH oxidase subunit expression: implication for native LDL oxidation. Circ Res. 2003;93(12):1225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xiao L, Pimentel D, Wang J, Singh K, Colucci W, Sawyer D. Role of reactive oxygen species and NAD(P)H oxidase in alpha(1)-adrenoceptor signaling in adult rat cardiac myocytes. Am J Physiol Cell Physiol. 2002;282:926–34.

    Article  Google Scholar 

  11. Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol. 2000;279(6):L1005–28.

    CAS  PubMed  Google Scholar 

  12. Davies KJ. Oxidative stress: the paradox of aerobic life. Biochem Soc Symp. 1995;61:1–31.

    Article  CAS  PubMed  Google Scholar 

  13. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med. 2000;28(10):1456–62.

    Article  CAS  PubMed  Google Scholar 

  14. Hemnani T, Parihar MS. Reactive oxygen species and oxidative DNA damage. Indian J Physiol Pharmacol. 1998;42(4):440–52.

    CAS  PubMed  Google Scholar 

  15. Lockwood TD. Redox control of protein degradation. Antioxid Redox Signal. 2000;2(4):851–78.

    Article  CAS  PubMed  Google Scholar 

  16. Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25(1):29–38.

    CAS  PubMed  Google Scholar 

  17. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87(10):840–4.

    Article  CAS  PubMed  Google Scholar 

  18. Förstermann U. Nitric oxide and oxidative stress in vascular disease. Pflugers Arch Eur J Physiol. 2010;459(6):923–39.

    Article  CAS  Google Scholar 

  19. Szabó C, Ischiropoulos H, Radi R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov. 2007;6(8):662–80.

    Article  PubMed  CAS  Google Scholar 

  20. Li H, Förstermann U. Uncoupling of endothelial NO synthase in atherosclerosis and vascular disease. Curr Opin Pharmacol. 2013;13:161–7.

    Article  PubMed  CAS  Google Scholar 

  21. Fleming I, Busse R. Signal transduction of eNOS activation. Cardiovasc Res. 1999;43:532–41.

    Article  CAS  PubMed  Google Scholar 

  22. Finkel T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194:7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dröge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82(1):47–95.

    Article  PubMed  Google Scholar 

  24. Wingler K, Hermans JJR, Schiffers P, Moens AL, Paul M, Schmidt HHHW. NOX1, 2, 4, 5: counting out oxidative stress. Br J Pharmacol. 2011;164:866–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore). 2000;79(3):170–200.

    Article  CAS  Google Scholar 

  26. Dinauer MC, Orkin SH. Chronic granulomatous disease. Annu Rev Med. 1992;43:117–24.

    Article  CAS  PubMed  Google Scholar 

  27. Thrasher A, Keep N, Wientjes F, Segal A. Chronic granulomatomatous disease. Biochim Biophys Acta. 1994;1227:1–24.

    Article  CAS  PubMed  Google Scholar 

  28. Navarro-Yepes J, Burns M, Anandhan A, Khalimonchuk O, Del Razo LM, Quintanilla-Vega B, et al. Oxidative stress, redox signaling and autophagy: cell death vs survival. Antioxid Redox Signal. 2014;21(1):66–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wen X, Wu J, Wang F, Liu B, Huang C, Wei Y. Deconvoluting the role of reactive oxygen species and autophagy in human diseases. Free Radic Biol Med. 2013;65:402–10.

    Article  CAS  PubMed  Google Scholar 

  30. Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med. 2013;63:207–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and beclin 1 in mediating autophagy. Circ Res. 2007;100(6):914–22.

    Article  CAS  PubMed  Google Scholar 

  32. Klionsky DJ, Baehrecke EH, Brumell JH, Chu CT, Codogno P, Cuervo AM, et al. A comprehensive glossary of autophagy-related molecules and processes. (2 nd edition)Autophagy. 2011;7:1273–94.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sciarretta S, Hariharan N, Monden Y, Zablocki D, Sadoshima J. Is autophagy in response to ischemia and reperfusion protective or detrimental for the heart? Pediatr Cardiol. 2011;32:275–81.

    Article  PubMed  Google Scholar 

  35. Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A, et al. Complex inhibitory effects of nitric oxide on autophagy. Mol Cell. 2011;43(1):19–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chung KKK, Thomas B, Li X, Pletnikova O, Troncoso JC, Marsh L, et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science. 2004;304(5675):1328–31.

    Article  CAS  PubMed  Google Scholar 

  37. Shafique E, Choy WC, Liu Y, Feng J, Arthur Lyra BC, Arafah M, et al. Oxidative stress improves coronary endothelial function through activation of the pro-survival kinase AMPK. Aging (Albany NY). 2013;5(7):515–30.

    Article  CAS  Google Scholar 

  38. Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MAO, et al. Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci U S A. 2009;106(15):6226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He C, Zhu H, Zhang W, Okon I, Wang Q, Li H, et al. 7-ketocholesterol induces autophagy in vascular smooth muscle cells through Nox4 and Atg4B. Am J Pathol. 2013;183(2):626–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sciarretta S, Zhai P, Shao D, Zablocki D, Nagarajan N, Terada L, et al. Activation of NADPH oxidase 4 in the endoplasmic reticulum promotes cardiomyocyte autophagy and survival during energy stress through the protein kinase RNA-activated-like endoplasmic reticulum kinase/eukaryotic initiation factor 2alpha/activating transcr. Circ Res. 2013;113:1253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sumimoto H. Structure, regulation and evolution of Nox-family NADPH oxidases that produce reactive oxygen species. FEBS J. 2008;275:3249–77.

    Article  CAS  PubMed  Google Scholar 

  42. Opitz N, Drummond G, Selemidis S, Meurer S, Schmidt H. The “A”s and “O”s of NADPH oxidase regulation: a commentary on “Subcellular localization and function of alternatively spliced Noxo1 isoforms”. Free Radic Biol Med. 2007;42:175–9.

    Article  CAS  PubMed  Google Scholar 

  43. Groemping Y, Lapouge K, Smerdon SJ, Rittinger K. Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell. 2003;113(3):343–55.

    Article  CAS  PubMed  Google Scholar 

  44. Han CH, Freeman JLR, Lee T, Motalebi SA, Lambeth JD. Regulation of the neutrophil respiratory burst oxidase: identification of an activation domain in p67(phox). J Biol Chem. 1998;273(27):16663–8.

    Article  CAS  PubMed  Google Scholar 

  45. Lyle AN, Deshpande NN, Taniyama Y, Seidel-Rogol B, Pounkova L, Du P, et al. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res. 2009;105(3):249–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Carrizzo A, Forte M, Lembo M, Formisano L, Puca AA, Vecchione C. Rac-1 as a new therapeutic target in cerebro- and cardio-vascular diseases. Curr Drug Targets. 2014;15(13):1231–46.

    Article  CAS  PubMed  Google Scholar 

  47. Ueyama T, Geiszt M, Leto TL. Involvement of Rac1 in activation of multicomponent Nox1- and Nox3-based NADPH oxidases. Mol Cell Biol. 2006;26(6):2160–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takac I, Schröder K, Zhang L, Lardy B, Anilkumar N, Lambeth J, et al. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem. 2011;286:13303–13.

    Article  CAS  Google Scholar 

  49. Hoste C, Dumont JE, Miot F, De Deken X. The type of DUOX-dependent ROS production is dictated by defined sequences in DUOXA. Exp Cell Res. 2012;318(18):2353–64.

    Article  CAS  PubMed  Google Scholar 

  50. Montezano AC, Touyz RM. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxid Redox Signal. 2014;20(1):164–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martyn KD, Frederick LM, Von Loehneysen K, Dinauer MC, Knaus UG. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases. Cell Signal. 2006;18(1):69–82.

    Article  CAS  PubMed  Google Scholar 

  52. Dworakowski R, Alom-Ruiz SP, Shah AM. NADPH oxidase-derived reactive oxygen species in the regulation of endothelial phenotype. Pharmacol Rep. 2008;60:21–8.

    CAS  PubMed  Google Scholar 

  53. Lassègue B, Sorescu D, Szöcs K, Yin Q, Akers M, Zhang Y, et al. Novel gp91phox homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res. 2001;88(9):888–94.

    Article  PubMed  Google Scholar 

  54. Pagano PJ, Clark JK, Cifuentes-Pagano ME, Clark SM, Callis GM, Quinn MT. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: enhancement by angiotensin II. Proc Natl Acad Sci U S A. 1997;94(26):14483–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Haurani MJ, Pagano PJ. Adventitial fibroblast reactive oxygen species as autacrine and paracrine mediators of remodeling: bellwether for vascular disease? Cardiovasc Res. 2007;75:679–89.

    Article  CAS  PubMed  Google Scholar 

  56. Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, et al. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res. 2002;90(11):1205–13.

    Article  CAS  PubMed  Google Scholar 

  57. Mollnau H, Wendt M, Szöcs K, Lassègue B, Schulz E, Oelze M, et al. Effects of angiotensin II infusion on the expression and function of NAD(P)H oxidase and components of nitric oxide/cGMP signaling. Circ Res. 2002;90(4):E58–65.

    Article  PubMed  Google Scholar 

  58. Wang HD, Xu S, Johns DG, Du Y, Quinn MT, Cayatte AJ, et al. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice. Circ Res. 2001;88(9):947–53.

    Article  CAS  PubMed  Google Scholar 

  59. Wind S, Knut B, Armitage ME, Ashraf T, Arun H, Kumar DJ, et al. Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition. Hypertension. 2010;56:490–7.

    Article  CAS  PubMed  Google Scholar 

  60. Judkins CP, Diep H, Broughton BRS, Mast AE, Hooker EU, Miller AA, et al. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE-/- mice. Am J Physiol Heart Circ Physiol. 2010;298(1):H24–32.

    Article  CAS  PubMed  Google Scholar 

  61. Bendall JK, Cave AC, Heymes C, Gall N, Shah AM. Pivotal role of a gp91phox-containing NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation. 2002;105(3):293–6.

    Article  CAS  PubMed  Google Scholar 

  62. Ago T, Kitazono T, Ooboshi H, Iyama T, Han YH, Takada J, et al. Nox4 as the major catalytic component of an endothelial NAD(P)H oxidase. Circulation. 2004;109(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  63. Ago T, Kuroda J, Pain J, Fu C, Li H, Sadoshima J. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res. 2010;106(7):1253–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matsushima S, Kuroda J, Ago T, Zhai P, Park JY, Xie LH, et al. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy. Circ Res. 2013;112(4):651–63.

    Article  CAS  PubMed  Google Scholar 

  65. Chen K, Kirber MT, Xiao H, Yang Y, Keaney JF. Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol. 2008;181(7):1129–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Anilkumar N, Jose GS, Sawyer I, Santos CXC, Sand C, Brewer AC, et al. A 28-kDa splice variant of NADPH oxidase-4 is nuclear-localized and involved in redox signaling in vascular cells. Arterioscler Thromb Vasc Biol. 2013;33(4):e104–12.

    Article  CAS  PubMed  Google Scholar 

  67. Andreassi C, Riccio A. To localize or not to localize: mRNA fate is in 3′UTR ends. Trends Cell Biol. 2009;19:465–74.

    Article  CAS  PubMed  Google Scholar 

  68. Colombo S, Longhi R, Alcaro S, Ortuso F, Sprocati T, Flora A, et al. N-myristoylation determines dual targeting of mammalian NADH-cytochrome b(5) reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning. J Cell Biol. 2005;168(5):735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li J-M, Mullen AM, Yun S, Wientjes F, Brouns GY, Thrasher AJ, et al. Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ Res. 2002;90(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang M, Brewer AC, Schröder K, Santos CXC, Grieve DJ, Wang M, et al. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis. Proc Natl Acad Sci U S A. 2010;107(42):18121–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jiang F, Liu GS, Dusting GJ, Chan EC. NADPH oxidase-dependent redox signaling in TGF-beta-mediated fibrotic responses. Redox Biol. 2014;2:267–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ismail S, Sturrock A, Wu P, Cahill B, Norman K, Huecksteadt T, et al. NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: the role of autocrine production of transforming growth factor-{beta}1 and insulin-like growth factor binding protein-3. Am J Physiol Lung Cell Mol Physiol. 2009;296(3):L489–99.

    Article  CAS  PubMed  Google Scholar 

  73. Lu X, Murphy TC, Nanes MS, Hart CM. PPAR{gamma} regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-{kappa}B. Am J Physiol Lung Cell Mol Physiol. 2010;299(4):L559–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Williams CR, Lu X, Sutliff RL, Hart CM. Rosiglitazone attenuates NF-κB-mediated Nox4 upregulation in hyperglycemia-activated endothelial cells. Am J Physiol Cell Physiol. 2012;303(2):C213–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ellmark SHM, Dusting GJ, Ng Tang Fui M, Guzzo-Pernell N, Drummond GR. The contribution of Nox4 to NADPH oxidase activity in mouse vascular smooth muscle. Cardiovasc Res. 2005;65(2):495–504.

    Article  CAS  PubMed  Google Scholar 

  76. Hwang J, Kleinhenz DJ, Lassègue B, Griendling KK, Dikalov S, Hart CM. Peroxisome proliferator-activated receptor-gamma ligands regulate endothelial membrane superoxide production. Am J Physiol Cell Physiol. 2005;288(4):C899–905.

    Article  CAS  PubMed  Google Scholar 

  77. Kuroda J, Ago T, Matsushima S, Zhai P, Schneider MD, Sadoshima J. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart. Proc Natl Acad Sci U S A. 2010;107(35):1–6.

    Article  Google Scholar 

  78. Maalouf RM, Eid AA, Gorin YC, Block K, Escobar GP, Bailey S, et al. Nox4-derived reactive oxygen species mediate cardiomyocyte injury in early type 1 diabetes. Am J Physiol Cell Physiol. 2012;302(3):C597–604.

    Article  CAS  PubMed  Google Scholar 

  79. Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 2008;31(Suppl 2):S170–80.

    Article  CAS  PubMed  Google Scholar 

  80. Duncan ER, Crossey PA, Walker S, Anilkumar N, Poston L, Douglas G, et al. Effect of endothelium-specific insulin resistance on endothelial function in vivo. Diabetes. 2008;57(12):3307–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, et al. Post-stroke inhibition of induced NADPH Oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 2010;8(9):e1000479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Tong X, Hou X, Jourd’Heuil D, Weisbrod RM, Cohen RA. Upregulation of Nox4 by TGFbeta 1 oxidizes SERCA and inhibits NO in arterial smooth muscle of the prediabetic zucker rat. Circ Res. 2010;107(8):975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tong X, Khandelwal AR, Qin Z, Wu X, Chen L, Ago T, et al. Role of smooth muscle Nox4-based NADPH oxidase in neointimal hyperplasia. J Mol Cell Cardiol. 2015;89:185–94.

    Article  CAS  PubMed  Google Scholar 

  84. Santos CX, Hafstad AD, Beretta M, Zhang M, Molenaar C, Kopec J, et al. Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2α-mediated stress signaling. EMBO J. 2016;35(3):319–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yu Q, Lee C, Wang W, Karamanlidis G, Kuroda J, Matsushima S, et al. Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury. J Am Heart Assoc. 2014;3(1):e0005.

    Article  CAS  Google Scholar 

  86. Matsushima S, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka S, et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1alpha and upregulation of peroxisome proliferator-activated receptor-alpha. Circ Res. 2013;112(8):1135–49.

    Article  CAS  PubMed  Google Scholar 

  87. Schröder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, et al. Nox4 Is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res. 2012;110(9):1217–25.

    Article  PubMed  CAS  Google Scholar 

  88. Schurman C, Rezende F, Kruse C, Yasar Y, Lowe O, Fork C, et al. The NADPH oxidase Nox4 has anti-atherosclerotic functions. Eur Heart J. 2015;36(48):3447–56.

    Article  Google Scholar 

  89. Craige SM, Kant S, Reif M, Chen K, Pei Y, Angoff R, et al. Endothelial NADPH oxidase 4 protects ApoE−/− mice from atherosclerotic lesions. Free Radic Biol Med. 2015;89:1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brewer AC, Murray TVA, Arno M, Zhang M, Anilkumar NP, Mann GE, et al. Nox4 regulates Nrf2 and glutathione redox in cardiomyocytes in vivo. Free Radic Biol Med. 2011;51(1):205–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Craige SM, Chen K, Pei Y, Li C, Huang X, Chen C, et al. NADPH Oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation. Circulation. 2011;124(6):731–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Diebold I, Flugel D, Becht S, Belaiba RS, Bonello S, Hess J, et al. The hypoxia-inducible factor-2alpha is stabilized by oxidative stress involving NOX4. Antioxid Redox Signal. 2010;13(4):425–36.

    Article  CAS  PubMed  Google Scholar 

  93. Block K, Gorin Y, Hoover P, Williams P, Chelmicki T, Clark RA, et al. NAD(P)H oxidases regulate HIF-2alpha protein expression. J Biol Chem. 2007;282(11):8019–26.

    Article  CAS  PubMed  Google Scholar 

  94. Kiffin R, Christian C, Knecht E, Cuervo AM. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell. 2004;15(11):4829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mijaljica D, Prescott M, Devenish RJ. Microautophagy in mammalian cells: Revisiting a 40-year-old conundrum. Autophagy. 2011;7:673–82.

    Article  CAS  PubMed  Google Scholar 

  96. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science. 2004;306(5698):990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Klionsky D, Cregg J, Dunn WJ. A unified nomenclature for yeast autophagy-related genes. Dev Cell. 2003;5:539–45.

    Article  CAS  PubMed  Google Scholar 

  98. Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24(1):24–41.

    Article  CAS  PubMed  Google Scholar 

  99. Galluzzi L, Pietrocola F, Levine B, Kroemer G. Metabolic control of autophagy. Cell. 2014;159:1263–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Green DR, Galluzzi L, Kroemer G. Metabolic control of cell death. Science. 2014;345(6203):1250256.

    Google Scholar 

  101. Ravikumar B, Futter M, Jahreiss L, Korolchuk V, Lichtenberg M, Luo S, et al. Mammalian macroautophagy at a glance. J Cell Sci. 2009;122:1707–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M, et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation. 2012;125(9):1134–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med. 2007;13:619–24.

    Article  CAS  PubMed  Google Scholar 

  104. Maejima Y, Kyoi S, Zhai P, Liu T, Li H, Ivessa A, et al. Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2. Nat Med. 2013;19:1478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sciarretta S, Volpe M, Sadoshima J. NOX4 regulates autophagy during energy deprivation. Autophagy. 2014;10(4):699–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ikeda Y, Shirakabe A, Brady C, Zablocki D, Ohishi M, Sadoshima J. Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system. J Mol Cell Cardiol. 2015;78:116–22.

    Article  CAS  PubMed  Google Scholar 

  107. Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest. 2007;117(7):1782–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhai P, Sciarretta S, Galeotti J, Volpe M, Sadoshima J. Differential roles of GSK-3{beta} during myocardial ischemia and ischemia/reperfusion. Circ Res. 2011;109:502–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu Y, Shoji-Kawata S, Sumpter RM, Wei Y, Ginet V, Zhang L, et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc Natl Acad Sci U S A. 2013;110(51):20364–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hariharan N, Maejima Y, Nakae J, Paik J, Depinho RA, Sadoshima J. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ Res. 2010;107(12):1470–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zhang H, Bosch-Marce M, Shimoda LA, Yee ST, Jin HB, Wesley JB, et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem. 2008;283(16):10892–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D, Pouysségur J, et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol Cell Biol. 2009;29(10):2570–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007;14(1):146–57.

    Article  CAS  PubMed  Google Scholar 

  114. Lee Y, Lee H-Y, Hanna RA, Gustafsson AB. Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. AJP Heart Circ Physiol. 2011;301(5):H1924–31.

    Article  CAS  Google Scholar 

  115. Zeng M, Wei X, Wu Z, Li W, Li B, Zhen Y, et al. NF-kappaB-mediated induction of autophagy in cardiac ischemia/reperfusion injury. Biochem Biophys Res Commun. 2013;436(2):180–5.

    Article  CAS  PubMed  Google Scholar 

  116. Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, et al. IKK connects autophagy to major stress pathways. Autophagy. 2010;6(1):189–91.

    Article  PubMed  Google Scholar 

  117. Wang W, Li S, Wang H, Li B, Shao L, Lai Y, et al. Nrf2 enhances myocardial clearance of toxic ubiquitinated proteins. J Mol Cell Cardiol. 2014;72:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007;26(7):1749–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Romao S, Gasser N, Becker AC, Guhl B, Bajagic M, Vanoaica D, et al. Autophagy proteins stabilize pathogen-containing phagosomes for prolonged MHC II antigen processing. J Cell Biol. 2013;203(5):757–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yoon S, Woo SU, Kang JH, Kim K, Kwon MH, Park S, et al. STAT3 transcriptional factor activated by reactive oxygen species induces IL6 in starvation-induced autophagy of cancer cells. Autophagy. 2010;6(8):1125–38.

    Article  CAS  PubMed  Google Scholar 

  121. Jaishy B, Zhang Q, Chung HS, Riehle C, Soto J, Jenkins S, et al. Lipid-induced NOX2 activation inhibits autophagic flux by impairing lysosomal enzyme activity. J Lipid Res. 2014;56:319–53.

    Google Scholar 

  122. Pal R, Palmieri M, Loehr JA, Li S, Abo-Zahrah R, Monroe TO, et al. Src-dependent impairment of autophagy by oxidative stress in a mouse model of Duchenne muscular dystrophy. Nat Commun. 2014;5:4425.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Whitehead NP, Yeung EW, Froehner SC, Allen DG. Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse. PLoS ONE. 2010;5(12):e15354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gervásio OL, Whitehead NP, Yeung EW, Phillips WD, Allen DG. TRPC1 binds to caveolin-3 and is regulated by Src kinase – role in Duchenne muscular dystrophy. J Cell Sci. 2008;121(Pt 13):2246–55.

    Article  PubMed  CAS  Google Scholar 

  125. Uehara T, Nakamura T, Yao D, Shi Z-Q, Gu Z, Ma Y, et al. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006;441(7092):513–7.

    Article  CAS  PubMed  Google Scholar 

  126. Pal R, Bajaj L, Sharma J, Palmieri M, Di Ronza A, Lotfi P, et al. NADPH oxidase promotes Parkinsonian phenotypes by impairing autophagic flux in an mTORC1-independent fashion in a cellular model of Parkinson’s disease. Sci Rep. 2016;6:22866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hu W, Tian H, Yue W, Li L, Li S, Gao C, et al. Rotenone induces apoptosis in human lung cancer cells by regulating autophagic flux. IUBMB Life. 2016;68(5):388–93.

    Article  CAS  PubMed  Google Scholar 

  128. Zhu X, Shen K, Bai Y, Zhang A, Xia Z, Chao J, et al. NADPH oxidase activation is required for pentylenetetrazole kindling-induced hippocampal autophagy. Free Radic Biol Med. 2016;94:230–42.

    Article  CAS  PubMed  Google Scholar 

  129. Teng R-J, Du J, Welak S, Guan T, Eis A, Shi Y, et al. Cross talk between NADPH oxidase and autophagy in pulmonary artery endothelial cells with intrauterine persistent pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol. 2012;302(7):L651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor {alpha} and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993;53(15):3579–84.

    CAS  PubMed  Google Scholar 

  131. Sobhakumari A, Schickling BM, Love-Homan L, Raeburn A, Fletcher EVM, Case AJ, et al. NOX4 mediates cytoprotective autophagy induced by the EGFR inhibitor erlotinib in head and neck cancer cells. Toxicol Appl Pharmacol. 2013;272(3):736–45.

    Article  CAS  PubMed  Google Scholar 

  132. Ren G, Luo W, Sun W, Niu Y, Ma DL, Leung CH, et al. Psoralidin induced reactive oxygen species (ROS)-dependent DNA damage and protective autophagy mediated by NOX4 in breast cancer cells. Phytomedicine. 2016;23(9):939–47.

    Article  CAS  PubMed  Google Scholar 

  133. Wu R-F, Ma Z, Liu Z, Terada LS. Nox4-derived H2O2 mediates endoplasmic reticulum signaling through local Ras activation. Mol Cell Biol. 2010;30(14):3553–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhao H, Zhang M, Zhou F, Cao W, Bi L, Xie Y, et al. Cinnamaldehyde ameliorates LPS-induced cardiac dysfunction via TLR4-NOX4 pathway: the regulation of autophagy and ROS production. J Mol Cell Cardiol. 2016;101:11–24. Epub ahead of print

    Article  CAS  PubMed  Google Scholar 

  135. Kouroku Y, Fujita E, Tanida I, Ueno T, Isoai A, Kumagai H, et al. ER stress (PERK/eIF2alpha phosphorylation) mediates the polyglutamine-induced LC3 conversion, an essential step for autophagy formation. Cell Death Differ. 2007;14(2):230–9.

    Article  CAS  PubMed  Google Scholar 

  136. Matsushima S, Kuroda J, Zhai P, Liu T, Ikeda S, Nagarajan N, et al. Tyrosine kinase FYN negatively regulates NOX4 in cardiac remodeling. J Clin Invest. 2016;126:3403–16.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastiano Sciarretta MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Forte, M., Palmerio, S., Yee, D., Frati, G., Sciarretta, S. (2017). Functional Role of Nox4 in Autophagy. In: Santulli, G. (eds) Mitochondrial Dynamics in Cardiovascular Medicine. Advances in Experimental Medicine and Biology, vol 982. Springer, Cham. https://doi.org/10.1007/978-3-319-55330-6_16

Download citation

Publish with us

Policies and ethics