Skip to main content

Cellulosic Polymer Blends 2: With Aliphatic Polyesters

  • Chapter
  • First Online:
Blends and Graft Copolymers of Cellulosics

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSBP))

  • 375 Accesses

Abstract

This chapter presents a review of the authors’ studies on blends of cellulosic and chitinous polymers with a typical biodegradable polyester, poly(ε-caprolactone) (PCL). A miscibility map is constructed for a series of cellulose ester (CE)/PCL blends as a function of the carbon number (N) in the acyl substituent of CE and the degree of substitution (DS). The map reveals that cellulose butyrate (CB), with N = 4, is miscible with PCL at a comparatively lower DS, owing to a structural similarity advantage for the ester side-group of CB with a repeating unit of PCL. The melt-crystallization behavior of PCL in the miscible blends is also described, and the observed slower kinetics is interpreted in terms of a thermodynamic diluent effect of the CE component. A similar miscibility characterization is made for a comparable series of acylated chitin (Acyl-Ch)/PCL blends. The blend miscibility of the chitinous series is generally lower owing to the concurrence of N-acylation at the C2 position than that for the cellulosic series. The tensile ductility and cytocompatibility are evaluated for selected Acyl-Ch/PCL blends with different degrees of miscibility and crystallinity, by using their thermally molded and alkali-treated films. The adaptability of the chitinous blends as cell-scaffolding materials is attainable by adequately controlling the mixing state of the polymer components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doi Y (2002) Biotechnology: unnatural biopolymers. Nat Mater 1:207–208. doi:10.1038/nmat783

    Article  Google Scholar 

  2. Fukushima K, Kimura Y (2006) Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int 55:626–642. doi:10.1002/pi.2010

    Article  Google Scholar 

  3. Rainbolt EA, Washington KE, Biewer MC, Stefan MC (2015) Recent developments in micellar drug carriers featuring substituted poly(ε-caprolactone)s. Polym Chem 6:2369–2381. doi:10.1039/C4PY01628A

    Article  Google Scholar 

  4. Huang MH, Li S, Vert M (2004) Synthesis and degradation of PLA-PCL-PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and DL-lactide. Polymer 45:8675–8681. doi:10.1016/j.polymer.2004.10.054

    Article  Google Scholar 

  5. Matsusaki H, Abe H, Doi Y (2000) Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 1:17–22. doi:10.1021/bm9900040

    Article  Google Scholar 

  6. Kusaka S, Iwata T, Doi Y (1998) Microbial synthesis and physical properties of ultra-high-molecular-weight poly (R)-3-hydroxybutyrate. J Macromol Sci Pure Appl Chem A35:319–335. doi:10.1080/10601329808001980

    Article  Google Scholar 

  7. Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K, Ito K, Fujisawa T, Doi Y, Iwata T (2006) Formation of highly ordered structure in poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyvalerate] high-strength fibers. Macromolecules 39:2940–2946. doi:10.1021/ma0527505

    Article  Google Scholar 

  8. Utracki LA (1990) Polymer alloys and blends: thermodynamics and rheology. Hanser, Munich/New York

    Google Scholar 

  9. Nishio Y (2006) Material functionalization of cellulose and related polysaccharides via diverse microcompositions. Adv Polym Sci 205:97–151. doi:10.1007/12_095

    Article  Google Scholar 

  10. Edgar KJ, Buchanan CM, Debenham JS, Rundquist PA, Seiler BD, Shelton MC, Tinball D (2001) Advances in cellulose ester performance and application. Prog Polym Sci 26:1605–1688. doi:10.1016/S0079-6700(01)00027-2

    Article  Google Scholar 

  11. Buchanan CM, Gardner RM, Komarek RJ (1993) Aerobic biodegradation of cellulose acetate. J Appl Polym Sci 47:1709–1719. doi:10.1002/app.1993.070471001

    Article  Google Scholar 

  12. Gardner RM, Buchanan CM, Komarek R, Dorschel D, Boggs C, White AW (1994) Compostability of cellulose acetate films. J Appl Polym Sci 52:1477–1488. doi:10.1002/app.1994.070521012

    Article  Google Scholar 

  13. Glasser WG, McCartney BK, Samaranayake G (1994) Cellulose derivatives with low degree of substitution. 3. The biodegradability of cellulose esters using a simple enzyme assay. Biotechnol Prog 10:214–219. doi:10.1021/bp00026a011

    Article  Google Scholar 

  14. Teramoto Y (2015) Functional thermoplastic materials from derivatives of cellulose and related structural polysaccharides. Molecules 20:5487–5527. doi:10.3390/molecules20045487

    Article  Google Scholar 

  15. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr Polym 82:227–232. doi:10.1016/j.carbpol.2010.04.074

    Article  Google Scholar 

  16. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182. doi:10.1016/j.foodchem.2008.11.047

    Article  Google Scholar 

  17. Tokiwa Y, Suzuki T (1977) Hydrolysis of polyesters by lipases. Nature 270:76–78. doi:10.1038/270076a0

    Article  Google Scholar 

  18. Scandola M, Ceccorulli G, Pizzoli M (1992) Miscibility of bacterial poly(3-hydroxybutyrate) with cellulose esters. Macromolecules 25:6441–6446. doi:10.1021/ma00050a009

    Article  Google Scholar 

  19. Ceccorulli G, Pizzoli M, Scandola M (1993) Effect of a low molecular weight plasticizer on the thermal and viscoelastic properties of miscible blends of bacterial poly(3-hydroxybutyrate) with cellulose acetate butyrate. Macromolecules 26:6722–6726. doi:10.1021/ma00077a005

    Article  Google Scholar 

  20. Lotti N, Scanola M (1992) Miscibility of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with ester substituted celluloses. Polym Bull 29:407–413. doi:10.1007/BF00944838

    Article  Google Scholar 

  21. Buchanan CM, Gedon SC, White AW, Wood MD (1992) Cellulose acetate butyrate and poly(hydroxybutyrate-co-valerate) copolymer blends. Macromolecules 25:7373–7381. doi:10.1021/ma00052a046

    Article  Google Scholar 

  22. Buchanan CM, Gedon SC, Pearcy BG, White AW, Wood MD (1993) Cellulose ester-aliphatic polyester blends: the influence of diol length on blend miscibility. Macromolecules 26:5704–5710. doi:10.1021/ma00073a027

    Article  Google Scholar 

  23. Buchanan CM, Gedon SC, White AW, Wood MD (1993) Cellulose acetate propionate and poly(tetramethy1ene glutarate) blends. Macromolecules 26:2963–2967. doi:10.1021/ma00063a048

    Article  Google Scholar 

  24. Tomasi G, Scandola M (1995) Blends of bacterial poly(3-hydroxybutyrate) with cellulose acetate butyrate in activated sludge. J Macromol Sci Pure Appl Chem A32:671–681. doi:10.1080/10601329508010280

    Article  Google Scholar 

  25. Scandola M (1995) Polymer blends based on bacterial poly(3-hydroxybutyrate). Can J Microbiol 41:310–315. doi:10.1139/m95-202

    Article  Google Scholar 

  26. Gilmore DF, Fuller RC, Schneider B, Lenz RW, Lotti N, Scandola M (1994) Biodegradability of blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose acetate esters in activated sludge. J Environ Polym Degrad 2:49–57. doi:10.1007/BF02073486

    Article  Google Scholar 

  27. Buchanan CM, Boggs CN, Dorschel DD, Gardner RM, Komarek RJ, Watterson TL, White AW (1995) Composting of miscible cellulose acetate propionate-aliphatic polyester blends. J Environ Polym Degrad 3:1–11. doi:10.1007/BF02067788

    Article  Google Scholar 

  28. Nishio Y, Matsuda K, Miyashita Y, Kimura N, Suzuki H (1997) Blends of poly(ε-caprolactone) with cellulose alkyl esters: effect of the alkyl side-chain length and degree of substitution on miscibility. Cellulose 4:131–145. doi:10.1023/A:1018475520600

    Article  Google Scholar 

  29. Kusumi R, Inoue Y, Shirakawa M, Miyashita Y, Nishio Y (2008) Cellulose alkyl ester/poly(ε-caprolactone) blends: characterization of miscibility and crystallization behaviour. Cellulose 15:1–16. doi:10.1007/s10570-007-9144-x

    Article  Google Scholar 

  30. Brode GL, Koleske JV (1972) Lactone polymerization and polymer properties. J Macromol Sci Chem A6:1109–1144. doi:10.1080/10601327208056888

    Article  Google Scholar 

  31. Olhoft GV, Eldred NR, Koleske JV (1972) Compositions of nitrocellulose and cyclic ester polymers. US Patent, 3642507

    Google Scholar 

  32. Hubbell DS, Cooper SL (1977) The physical properties and morphology of poly-ε-caprolactone polymer blends. J Appl Polym Sci 21:3035–3061. doi:10.1002/app.1977.070211117

    Article  Google Scholar 

  33. Koleske JV (1978) Blends containing poly(ε-caprolactone) and related polymers. In: Paul DR, Newman S (eds) Polymer blends, vol 2. Academic Press, New York, pp 369–389

    Chapter  Google Scholar 

  34. Ohno T, Yoshizawa S, Miyashita Y, Nishio Y (2005) Interaction and scale of mixing in cellulose acetate/poly(N-vinyl pyrrolidone-co-vinyl acetate) blends. Cellulose 12:281–291. doi:10.1007/s10570-004-5836-7

    Article  Google Scholar 

  35. Ohno T, Nishio Y (2007) Estimation of miscibility and interaction for cellulose acetate and butyrate blends with N-vinylpyrrolidone copolymers. Macromol Chem Phys 208:622–634. doi:10.1002/macp.200600510

    Article  Google Scholar 

  36. Sugimura K, Katano S, Teramoto Y, Nishio Y (2013) Cellulose propionate/poly(N-vinyl pyrrolidone-co-vinyl acetate) blends: dependence of the miscibility on propionyl DS and copolymer composition. Cellulose 20:239–252. doi:10.1007/s10570-012-9797-y

    Article  Google Scholar 

  37. Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7:1103–1112. doi:10.1063/1.1750380

    Article  Google Scholar 

  38. Takahashi T, Nishio Y, Mizuno H (1987) Crystallization behavior of polybutene-1 in the anisotropic system blended with polypropylene. J Appl Polym Sci 34:2757–2768. doi:10.1002/app.1987.070340811

    Article  Google Scholar 

  39. Nishio Y, Hirose N, Takahashi T (1990) Crystallization behavior of poly(ethylene oxide) in its blends with cellulose. Sen’i Gakkaishi 46:441–446. doi:10.2115/fiber.46.10_441

    Article  Google Scholar 

  40. Hoffman JD, Weeks JJ (1962) Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. J Chem Phys 37:1723–1741. doi:10.1063/1.1733363

    Article  Google Scholar 

  41. Nishi T, Wang TT (1975) Melting point depression and kinetic effects of cooling on crystallization in poly(viny1idene fluoride)-poly (methylmethacrylate) mixtures. Macromolecules 8:909–915. doi:10.1021/ma60048a040

    Article  Google Scholar 

  42. Scott RL (1949) The thermodynamics of high polymer solutions. V. Phase equilibria in the ternary system: polymer 1-polymer 2-solvent. J Chem Phys 17:279–284. doi:10.1063/1.1747239

    Article  Google Scholar 

  43. Morra BS, Stein RS (1982) Melting studies of poly(vinylidene fluoride) and its blends with poly(methyl methacrylate). J Polym Sci Polym Phys Ed 20:2243–2259. doi:10.1002/pol.1982.180201207

    Article  Google Scholar 

  44. Hoffman JD, Frolen LJ, Ross GS, Lauritzen JI (1975) On the growth rate of spherulites and axialites from the melt in polyethylene fractions: regime I and regime II crystallization. J Res Natl Bur Stand Sect A Phys Chem 79A:671–699. doi:10.6028/jres.079A.026

    Article  Google Scholar 

  45. Lauritzen JI, Hoffman JD (1973) Extension of theory of growth of chain-folded polymer crystals to large undercoolings. J Appl Phys 44:4340–4352. doi:10.1063/1.1661962

    Article  Google Scholar 

  46. Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17:71–73. doi:10.1063/1.1747055

    Article  Google Scholar 

  47. Boon J, Azcue JM (1968) Crystallization kinetics of polymer-diluent mixtures. Influence of benzophenone on the spherulitic growth rate of isotactic polystyrene. J Polym Sci A-2 Polym Phys 6:885–894. doi:10.1002/pol.1968.160060508

  48. Martuscelli E, Silvestre C, Gismondi C (1985) Morphology, crystallization and thermal behaviour of poly(ethylene oxide)/poly(vinyl acetate) blends. Makromol Chem 186:2161–2176. doi:10.1002/macp.1985.021861020

    Article  Google Scholar 

  49. Ong CJ, Price FP (1978) Blends of poly(ε-caprolactone) with poly(vinyl chloride). I. Morphology. J Polym Sci C Polym Symp 63:45–58. doi:10.1002/polc.5070630108

    Article  Google Scholar 

  50. Martuscelli E (1984) Influence of composition, crystallization conditions and melt phase structure on solid morphology, kinetics of crystallization and thermal behavior of binary polymer/polymer blends. Polym Eng Sci 24:563–586. doi:10.1002/pen.760240809

    Article  Google Scholar 

  51. Chatani Y, Okita Y, Tadokoro H, Yamashita Y (1970) Structural studies of polyesters. III. Crystal structure of poly-ε-caprolactone. Polym J 1:555–562. doi:10.1295/polymj.1.555

    Article  Google Scholar 

  52. Khambatta FB, Warner F, Russel T, Stein RS (1976) Small-angle X-ray and light scattering studies of the morphology of blends of poly(ε-caprolactone) with poly(vinyl chloride). J Polym Sci Polym Phys Ed 14:1391–1424. doi:10.1002/pol.1976.180140805

    Article  Google Scholar 

  53. Keith HD, Padden FJ, Russell TP (1989) Morphological changes in polyesters and polyamides induced by blending with small concentrations of polymer diluents. Macromolecules 22:666–675. doi:10.1021/ma00192a027

    Article  Google Scholar 

  54. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150. doi:10.1016/j.biotechadv.2009.11.001

    Article  Google Scholar 

  55. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24:2339–2349. doi:10.1016/S0142-9612(03)00026-7

    Article  Google Scholar 

  56. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182. doi:10.1016/j.carbpol.2008.11.002

    Article  Google Scholar 

  57. Teramoto Y, Miyata T, Nishio Y (2006) Dual mesomorphic assemblage of chitin normal acylates and rapid enthalpy relaxation of their side chains. Biomacromolecules 7:190–198. doi:10.1021/bm050580y

    Article  Google Scholar 

  58. Yang BY, Ding Q, Montgomery R (2009) Preparation and physical properties of chitin fatty acids esters. Carbohydr Res 344:336–342. doi:10.1016/j.carres.2008.11.006

    Article  Google Scholar 

  59. Hirano S, Ohe Y (1975) A facile N-acylation of chitosan with carboxylic anhydrides in acidic solutions. Carbohydr Res 41:C1–C2. doi:10.1016/s0008-6215(00)87046-9

    Article  Google Scholar 

  60. Kurita K, Sannan T, Iwakura Y (1977) Sudies on chitin, 3. Preparation of pure chitin, poly(N-acetyl-D-glucosamine), from water-soluble chitin. Macromol Chem Phys 178:2595–2602. doi:10.1002/macp.1977.021780910

    Article  Google Scholar 

  61. Nishi N, Noguchi J, Tokura S, Shiota H (1979) Studies on chitin. I. Acetylation of chitin. Polym J 11:27–32. doi:10.1295/polymj.11.27

    Article  Google Scholar 

  62. Fujii S, Kumagai H, Noda M (1980) Preparation of poly(acyl)chitosans. Carbohydr Res 83:389–393. doi:10.1016/s0008-6215(00)84553-x

    Article  Google Scholar 

  63. Kaifu K, Nishi N, Komai T (1981) Preparation of hexanoyl, decanoyl, and dodecanoylchitin. J Polym Sci Polym Chem 19:2361–2363. doi:10.1002/pol.1981.170190921

    Article  Google Scholar 

  64. Kurita K, Chikaoka S, Kamiya M, Koyama Y (1988) Studies on chitin. 14. N-Acetylation behavior of chitosan with acetyl chloride and acetic anhydride in a highly swelled state. Bull Chem Soc Jpn 61:927–930. doi:10.1246/bcsj.61.927

    Article  Google Scholar 

  65. Honma T, Senda T, Inoue Y (2003) Thermal properties and crystallization behaviour of blends of poly(ε-caprolactone) with chitin and chitosan. Polym Int 52:1839–1846. doi:10.1002/pi.1380

    Article  Google Scholar 

  66. Ko MJ, Jo WH, Kim HC, Lee SC (1997) Miscibility of chitosans/polyamide 6 blends. Polym J 29:997–1001. doi:10.1295/polymj.29.997

    Article  Google Scholar 

  67. Kubota N, Konaka G, Eguchi Y (1998) Characterization of blend films of chitin regenerated from porous chitosan with poly(vinyl alcohol). Sen’i Gakkaishi 54:212–218. doi:10.2115/fiber.54.4_212

    Article  Google Scholar 

  68. Lee YM, Kim SH, Kim SJ (1996) Preparation and characteristics of beta-chitin and poly(vinyl alcohol) blend. Polymer 37:5897–5905. doi:10.1016/s0032-3861(96)00449-1

    Article  Google Scholar 

  69. Miyashita Y, Yamada Y, Kimura N, Nishio Y, Suzuki H (1995) Preparation and miscibility characterization of chitin/poly(N-vinyl pyrrolidone) blends. Sen’i Gakkaishi 51:396–399. doi:10.2115/fiber.51.8_396

    Article  Google Scholar 

  70. Miyashita Y, Sato M, Kimura N, Nishio Y, Suzuki H (1996) An effect of deacetylation of chitin on the miscibility of chitin poly(vinyl alcohol) blends. Kobunshi Ronbunshu 53:149–154. doi:10.1295/koron.53.149

    Article  Google Scholar 

  71. Miyashita Y, Yamada Y, Kimura N, Suzuki H, Iwata M, Nishio Y (1997) Phase structure of chitin poly(glycidyl methacrylate) composites synthesized by a solution coagulation bulk polymerization method. Polymer 38:6181–6187. doi:10.1016/s0032-3861(97)00174-2

    Article  Google Scholar 

  72. Miyashita Y, Kobayashi R, Kimura N, Suzuki H, Nishio Y (1997) Transition behavior and phase structure of chitin/poly(2-hydroxyethyl methacrylate) composites synthesized by a solution coagulation bulk polymerization method. Carbohydr Polym 34:221–228. doi:10.1016/s0144-8617(97)00110-0

    Article  Google Scholar 

  73. Nishio Y, Koide T, Miyashita Y, Kimura N, Suzuki H (1999) Water-soluble polymer blends with partially deacetylated chitin: a miscibility characterization. J Polym Sci B Polym Phys 37:1533–1538. doi:10.1002/(sici)1099-0488(19990701)37:13<1533:aid-polb19>3.0.co;2-l

    Article  Google Scholar 

  74. Ikejima T, Inoue Y (2000) Crystallization behavior and environmental biodegradability of the blend films of poly(3-hydroxybutyric acid) with chitin and chitosan. Carbohydr Polym 41:351–356. doi:10.1016/s0144-8617(99)00105-8

    Article  Google Scholar 

  75. Ikejima T, Yagi K, Inoue Y (1999) Thermal properties and crystallization behavior of poly(3-hydroxybutyric acid) in blends with chitin and chitosan. Macromol Chem Phys 200:413–421. doi:10.1002/(sici)1521-3935(19990201)200:2<413:aid-macp413>3.0.co;2-q

    Article  Google Scholar 

  76. Mi FL, Lin YM, Wu YB, Shyu SS, Tsai YH (2002) Chitin/PLGA blend microspheres as a biodegradable drug-delivery system: phase-separation, degradation and release behavior. Biomaterials 23:3257–3267. doi:10.1016/s0142-9612(02)00084-4

    Article  Google Scholar 

  77. Mi FL, Shyu SS, Lin YM, Wu YB, Peng CK, Tsai YH (2003) Chitin/PLGA blend microspheres as a biodegradable drug delivery system: a new delivery system for protein. Biomaterials 24:5023–5036. doi:10.1016/s0142-9612(03)00413-7

    Article  Google Scholar 

  78. Sarasam A, Madihally SV (2005) Characterization of chitosan-polycaprolactone blends for tissue engineering applications. Biomaterials 26:5500–5508. doi:10.1016/j.biomaterials.2005.01.071

    Article  Google Scholar 

  79. Senda T, He Y, Inoue Y (2002) Biodegradable blends of poly(ε-caprolactone) with α-chitin and chitosan: specific interactions, thermal properties and crystallization behavior. Polym Int 51:33–39. doi:10.1002/pi.793

    Article  Google Scholar 

  80. Wan Y, Wu H, Cao XY, Dalai S (2008) Compressive mechanical properties and biodegradability of porous poly(caprolactone)/chitosan scaffolds. Polym Degrad Stab 93:1736–1741. doi:10.1016/j.polymdegradstab.2008.08.001

    Article  Google Scholar 

  81. Chen B, Sun K, Ren T (2005) Mechanical and viscoelastic properties of chitin fiber reinforced poly(ε-caprolactone). Eur Polym J 41:453–457. doi:10.1016/j.eurpolymj.2004.10.015

    Article  Google Scholar 

  82. Sugimoto M, Kawahara M, Teramoto Y, Nishio Y (2010) Synthesis of acyl chitin derivatives and miscibility characterization of their blends with poly(ε-caprolactone). Carbohydr Polym 79:948–954. doi:10.1016/j.carbpol.2009.10.014

    Article  Google Scholar 

  83. Hashiwaki H, Teramoto Y, Nishio Y (2014) Fabrication of thermoplastic ductile films of chitin butyrate/poly(ε-caprolactone) blends and their cytocompatibility. Carbohydr Polym 114:330–338. doi:10.1016/j.carbpol.2014.08.028

    Article  Google Scholar 

  84. Takada A, Fujii K, Watanabe J, Fukuda T, Miyamoto T (1994) Chain-length dependence of the mesomorphic properties of fully decanoated cellulose and cellooligosaccharides. Macromolecules 27:1651–1653. doi:10.1021/ma00084a057

    Article  Google Scholar 

  85. Draczynski Z, Bogun M, Mikolajczyk T, Szparaga G, Krol P (2013) The influence of forming conditions on the properties of the fibers made of chitin butyryl-acetic copolyester for medical applications. J Appl Polym Sci 127:3569–3577. doi:10.1002/app.37784

    Article  Google Scholar 

  86. Muzzarelli RAA, Guerrieri M, Goteri G, Muzzarelli C, Armeni T, Ghiselli R, Cornelissen M (2005) The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials 26:5844–5854. doi:10.1016/j.biomaterials.2005.03.006

    Article  Google Scholar 

  87. Pant HR, Kim HJ, Bhatt LR, Joshi MK, Kim EK, Kim JI, Abdal-hay A, Hui KS, Kim CS (2013) Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications. Appl Surf Sci 285(Part B):538–544. doi:10.1016/j.apsusc.2013.08.089

Download references

Acknowledgements

The review in this chapter is based on the authors’ studies that have been carried out in Professor Y. Nishio’s laboratory of Kyoto University. The authors would like to express their sincerest gratitude for his excellent navigation and invaluable suggestions. The authors are also grateful to many colleagues in the laboratory for their kind help in various ways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryosuke Kusumi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Kusumi, R., Teramoto, Y. (2017). Cellulosic Polymer Blends 2: With Aliphatic Polyesters. In: Blends and Graft Copolymers of Cellulosics. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-55321-4_3

Download citation

Publish with us

Policies and ethics