Skip to main content

Precise-Spike-Driven Synaptic Plasticity for Hetero Association of Spatiotemporal Spike Patterns

  • Chapter
  • First Online:
Neuromorphic Cognitive Systems

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 126))

  • 1604 Accesses

Abstract

This chapter introduces a new temporal learning rule, namely the Precise-Spike-Driven (PSD) Synaptic Plasticity, for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff (WH) rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity, 1st edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  2. Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. Int. J. Neural Syst. 19(04), 295–308 (2009)

    Article  Google Scholar 

  3. Maass, W.: Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10(9), 1659–1671 (1997)

    Article  Google Scholar 

  4. Shadlen, M.N., Movshon, J.A.: Synchrony unbound: review a critical evaluation of the temporal binding hypothesis. Neuron 24, 67–77 (1999)

    Article  Google Scholar 

  5. Gütig, R., Sompolinsky, H.: The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9(3), 420–428 (2006)

    Article  Google Scholar 

  6. Widrow, B., Lehr, M.: 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc. IEEE 78(9), 1415–1442 (1990)

    Article  Google Scholar 

  7. Knudsen, E.I.: Supervised learning in the brain. J. Neurosci. 14(7), 3985–3997 (1994)

    Google Scholar 

  8. Thach, W.T.: On the specific role of the cerebellum in motor learning and cognition: clues from PET activation and lesion studies in man. Behav. Brain Sci. 19(3), 411–431 (1996)

    Article  Google Scholar 

  9. Ito, M.: Mechanisms of motor learning in the cerebellum. Brain Res. 886(1–2), 237–245 (2000)

    Article  Google Scholar 

  10. Carey, M.R., Medina, J.F., Lisberger, S.G.: Instructive signals for motor learning from visual cortical area MT. Nat. Neurosci. 8(6), 813–819 (2005)

    Article  Google Scholar 

  11. Brader, J.M., Senn, W., Fusi, S.: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural Comput. 19(11), 2881–2912 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bohte, S.M., Kok, J.N., Poutré, J.A.L.: Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1–4), 17–37 (2002)

    Article  MATH  Google Scholar 

  13. Ponulak, F.: ReSuMe-new supervised learning method for spiking neural networks. Institute of Control and Information Engineering, Poznoń University of Technology, Technical report (2005)

    Google Scholar 

  14. Florian, R.V.: The chronotron: a neuron that learns to fire temporally precise spike patterns. PLoS One 7(8), e40,233 (2012)

    Google Scholar 

  15. Mohemmed, A., Schliebs, S., Matsuda, S., Kasabov, N.: SPAN: spike pattern association neuron for learning spatio-temporal spike patterns. Int. J. Neural Syst. 22(04), 1250,012 (2012)

    Google Scholar 

  16. Yu, Q., Tang, H., Tan, K.C., Li, H.: Rapid feedforward computation by temporal encoding and learning with spiking neurons. IEEE Trans. Neural Netw. Learn. Syst. 24(10), 1539–1552 (2013)

    Article  Google Scholar 

  17. Ponulak, F., Kasinski, A.: Supervised learning in spiking neural networks with resume: sequence learning, classification, and spike shifting. Neural Comput. 22(2), 467–510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  19. Rossum, M.: A novel spike distance. Neural Comput. 13(4), 751–763 (2001)

    Article  MATH  Google Scholar 

  20. Rieke, F., Warland, D., van Steveninck, R.D., Bialek, W.: Spikes: Exploring the Neural Code, 1st edn. MIT Press, Cambridge (1997)

    MATH  Google Scholar 

  21. Hu, J., Tang, H., Tan, K.C., Li, H., Shi, L.: A spike-timing-based integrated model for pattern recognition. Neural Comput. 25(2), 450–472 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gardner, E.: The space of interactions in neural networks models. J. Phys. A21, 257–270 (1988)

    MathSciNet  MATH  Google Scholar 

  23. Foehring, R.C., Lorenzon, N.M.: Neuromodulation, development and synaptic plasticity. Can. J. Exp. Psychol./Rev. Canadienne de Psychologie Expérimentale 53(1), 45–61 (1999)

    Article  Google Scholar 

  24. Seamans, J.K., Yang, C.R., et al.: The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 74(1), 1–57 (2004)

    Article  Google Scholar 

  25. Artola, A., Bröcher, S., Singer, W.: Different voltage-dependent thresholds for inducing long-term depressiona and long-term potentiation in slices of rat visual cortex. Nature 347, 69–72 (1990)

    Article  Google Scholar 

  26. Ngezahayo, A., Schachner, M., Artola, A.: Synaptic activity modulates the induction of bidirectional synaptic changes in adult mouse hippocampus. J. Neurosci. 20(7), 2451–2458 (2000)

    Google Scholar 

  27. Lisman, J., Spruston, N.: Postsynaptic depolarization requirements for LTP and LTD: a critique of spike timing-dependent plasticity. Nat. Neurosci. 8(7), 839–841 (2005)

    Article  Google Scholar 

  28. Froemke, R.C., Poo, M.M., Dan, Y.: Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature 434(7030), 221–225 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Yu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Yu, Q., Tang, H., Hu, J., Tan, K. (2017). Precise-Spike-Driven Synaptic Plasticity for Hetero Association of Spatiotemporal Spike Patterns. In: Neuromorphic Cognitive Systems. Intelligent Systems Reference Library, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-55310-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-55310-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-55308-5

  • Online ISBN: 978-3-319-55310-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics