Advertisement

Split-Gate Floating Poly SuperFlash® Memory Technology, Design, and Reliability

  • Nhan Do
  • Hieu Van Tran
  • Alex Kotov
  • Vipin TiwariEmail author
Chapter
Part of the Integrated Circuits and Systems book series (ICIR)

Abstract

Split-gate embedded flash memory technology has been around for a couple of decades and has become a de facto standard for embedded products such as microcontrollers and smart cards. The majority of the large microcontroller and smartcard chip-makers and a series of fabless companies are now using some form of a split-gate embedded flash-memory technology because of its advantages in power, performance, and cost compared with traditional EEPROM or stacked-gate solutions. This chapter covers the fundamentals of split-gate embedded flash memories with an emphasis on SST’s widely adopted SuperFlash® memory technology as an example to demonstrate the benefits of a split-gate embedded flash-memory technologies. The fundamentals of SuperFlash technology, design, reliability, and scalability are discussed in detail in various sections, which would provide a detailed understanding of a split-gate, embedded flash-memory technology.

References

  1. 1.
  2. 2.
    F. Masuoka et. al. A new Flash EEPROM cell using triple polysilicon technology, IEEE Technical Digest IEDM (1984)Google Scholar
  3. 3.
    Embedded Flash Memories for Nano-Scale VLSIs, chapter 6, Springer, BerlinGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    B. Yeh, Single transistor non-volatile electrically alterable semiconductor memory device, U.S. Patent 5,029,130, 2 July 1991Google Scholar
  7. 7.
    S. Kianian, A. Levi, D. Lee, Y.-W. Hu, VLSI Symposium. Tech. Dig. 6A, 71–72 (1994)Google Scholar
  8. 8.
    D. Lee, Self aligned method of forming a semiconductor memory array of floating gate memory cells and a memory array made thereby, U.S. Patent 6,329,685, 11 Dec 2001Google Scholar
  9. 9.
    V. Markov, X. Liu, A. Kotov, A. Levi, T. Dang, and Y. Tkachev., in NVMTS (2003), p. 23Google Scholar
  10. 10.
    L.Q. Luo, Y.T. Chow, X.S. Cai, F. Zhang, Z.Q. Teo, D.X. Wang, K.Y. Lim, B.B. Zhou, J.Q. Liu, A. Yeo, T.L. Chang, Y.J. Kong, C.W. Yap, S. Lup, R. Long, J.B. Tan, D. Shum, N. Do, J.H. Kim, P. Ghazavi, V. Tiwari, in IEEE IMW (2015), pp. 165–169Google Scholar
  11. 11.
    Y. Tkachev, X. Liu, A. Kotov, V. Markov, A. Levi, in NVMTS (2004), pp. 45–50Google Scholar
  12. 12.
    N. Do, in IEEE ICICDT (2016), pp. 1–4Google Scholar
  13. 13.
    M. Kamiya, Y. Kojima, Y. Kato, K. Tanaka, Y. Hayashi, in IEEE IEDM (1982), pp. 741–744Google Scholar
  14. 14.
    A. T. Wu, T. Y. Chan, P.K. Ko, C. Hu, in IEEE IEDM (1986), pp. 584–587Google Scholar
  15. 15.
    H.C. Sung, F.L. Tan, T.H. Hsu, Y.C. Kao, Y.T. Lin, C.S. Wang., in IEEE Electron Device Letters, vol. 26, no. 3 (2005), pp. 194–196Google Scholar
  16. 16.
    Y. Dong, W. Kong, N. Do, S. L. Wang, G. Lee, in Solid-State Electronics, vol. 54 (2010), pp. 579–581Google Scholar
  17. 17.
    Y. Dong, W. Kong, N. Do, S. L. Wang, G. Lee, J. Semiconductors 31 (2010)Google Scholar
  18. 18.
    X. Liu, V. Markov, A. Kotov, T. Dang, A. Levi, in IEEE ICSSCIT (2006)Google Scholar
  19. 19.
    A. Kotov, A. Levi, Y. Tkachev, and V. Markov, in IEEE NVMTS, 2002Google Scholar
  20. 20.
    Y. Tkachev, in IEEE ICMTS (2016), pp. 110–115Google Scholar
  21. 21.
    H. Om’mani, M. Tadayoni, N. Thota, I. Yue, N. Do, in IEEE ICMTS (2013), pp. 192–194Google Scholar
  22. 22.
    Y. Tkachev, X. Liu, A. Kotov, in IEEE Transactions on Electron Devices, vol. 59, no. 1 (2012), pp. 5–11Google Scholar
  23. 23.
    N. Do, in IEEE IMW (2016), pp. 8–11Google Scholar
  24. 24.
    J. Van Houdt, P. Heremans, L. Deferm, G. Groeseneken, and H. Maes, in IEEE Transactions on Electron Devices, vol. 39 (1992), pp. 1150–1156Google Scholar
  25. 25.
    A. Kotov, Leading Edge Embedded Non Volatile Memories (2015)Google Scholar
  26. 26.
    V. Markov, K. Korablev, A. Kotov, X. Liu, Y. B. Jia, T. N. Dang, A. Levi, in IIRW Final Report (2007), pp. 43–47Google Scholar
  27. 27.
    V. Markov, A. Kotov, IEEE Trans. on Device and Materials Reliability, vol. 14, no. 2 (2014) pp. 672–680Google Scholar
  28. 28.
    V. Markov, J. Kim, A. Kotov, in Proceedings of the IEEE IMW (2016), pp. 21–24Google Scholar
  29. 29.
    A. Kotov, in MRS 2015 Fall Meeting, Symposium KK: Materials and Technology for Non-Volatile Memories (2015)Google Scholar
  30. 30.
    Y.K Lee, B. Seo, T-K Yu, B. Lee, E. Kim, C. Jeon, W. Park, Y. Kim, D. Lee, H. Lee, S. Cho, in IEEE IMW (2014), pp. 75–78Google Scholar
  31. 31.
    L.Q. Luo, Z.Q. Teo, Y.J. Kong, F.X. Deng, J.Q. Liu, F. Zhang, X.S. Cai, K.Y. Lim, P. Khoo, S.M. Jung, S.Y. Siah, D. Shum, C.M. Wang, J.C. Xing, G.Y. Liu, L. Tee, S.M. Lemke, P. Ghazavi, X. Liu, N. Do, in IEEE IMW (2016), pp. 149–152Google Scholar
  32. 32.
    T. Kono, T. Ito, T. Tsuruda, T. Nishiyama, T. Nagasawa, T. Ogawa, Y. Kawashima, H. Hidaka, T. Yamauchi, in IEEE ISSCC (2013), pp. 212–214Google Scholar
  33. 33.
    Y. Taito, M. Nakano, H. Okimoto, D. Odaka, T. Ito, T. Kono, K. Noguchi, H. Hidaka, T. Yamauchi, in IEEE ISSCC (2015), pp. 132–134Google Scholar
  34. 34.
    D. Shum, J.R. Power, R. Ullmann, E. Suryaputra, K. Ho, J. Hsiao, C.H. Tan, W. Langheinrich, C. Bukethal, V. Pissors, G. Tempel, M. Rohrich, A. Gratz, A. Iserhagen, E.O. Andersen, S. Paprotta, W. Dickenscheid, R. Strenz, R. Duschl, T. Kern, C.T. Hsieh, in IEEE IMW (2012), pp. 139–142Google Scholar
  35. 35.
    S.T. Kang, B. Winstead, J. Yater, M. Suhail, G. Zhang, C.-M. Hong, H. Gasquet, D. Kolar, J. Shen, B. Min, K. Loiko, A. Hardell, E. Lepore, R. Parks, R. Syzdek, S. Williams, W. Malloch, G. Chindalore, Y. Chen, Y. Shao, L. Huajun, L. Louis, S. Chaw, in IEEE IMW (2012), pp. 131–134Google Scholar
  36. 36.
    G. Torrente, X. Federspiel, D. Rideau, F. Monsieur, C. Tavernier, J. Coignus, D. Roy, G. Ghibaudo, in IEEE IRPS (2016), pp. 5A-4Google Scholar
  37. 37.
    A. Baiano, M.V. Duuren, E.V. D. Vegt, B. Schippers, R. Beurze, D.T. Mofrad, H.V. Zwol, Y. Chen, J. Chiang, H. Lokker, K.V. Dijk, J. Verbree, Y.N. Chen, J. Garbe, R. Verhaar, D. Dormans, in IEEE IMW (2015), pp. 173–176Google Scholar
  38. 38.
    K. Ramkumar, I. Kouznesov, V. Prabhakar, K. Shakeri, X. Yu, Y. Yang, L. Hinh, S. Lee, S. Samanta, H. M. Shih, S. Geha, in IEEE IMW (2013), pp. 199–202Google Scholar
  39. 39.
    J. Chang, in Leading Edge Embedded Non Volatile Memories (2015)Google Scholar
  40. 40.
    C. Su, H. Tran, M. Tadayoni, N. Do, J. Yang, Method of making embedded memory device with silicon-on-insulator substrate, U.S. patent 9,431,407, 30 Aug 2016Google Scholar
  41. 41.
    N. Do, in Leading Edge Embedded Non Volatile Memories (2015)Google Scholar
  42. 42.
    V. Tiwari, in Flash Memory Summit 2015—Driving Down the Memory Lane Google Scholar
  43. 43.
    D. Fan, C. Chen, P. Tuntasood, Flash memory cells with separated self-aligned select and erase gates, and process of fabrication, U.S. patent 6,747,310, 8 June 2004 Google Scholar
  44. 44.
    H. Tran, A. Ly, H. Nguyen, T. Vu, Array and pitch of non-volatile memory cells, U.S. patent 7,839,682, 23 Nov 2010Google Scholar
  45. 45.
    H. Tran, S. Nguyen, H. Nguyen, Sense amplifier for low voltage high speed sensing, U.S. patent 7,616,028, 10 Nov 2009Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Nhan Do
    • 1
  • Hieu Van Tran
    • 1
  • Alex Kotov
    • 1
  • Vipin Tiwari
    • 1
    Email author
  1. 1.Microchip Technology IncChandlerUSA

Personalised recommendations