Advertisement

Floating-Gate 1Tr-NOR eFlash Memory

  • Antonino Conte
  • Fabio Disegni
  • Francesco La Rosa
  • Alfonso MaurelliEmail author
Chapter
  • 866 Downloads
Part of the Integrated Circuits and Systems book series (ICIR)

Abstract

In this chapter, we will highlight the peculiar features of one of the most popular implementations of the embedded flash cell: the so-called 1Tr-NOR. The one-transistor cell has been by far the most adopted cell architecture in the world of flash NOR stand-alone memory. As an almost natural consequence, 1Tr-NOR architecture has also been considered the first, and for sure one of the best, solutions in embedded non-volatile memory (NVM) applications and has been progressively replacing EEPROM cells. In this chapter, only embedded multi-megabit flash implementation will be reviewed: different solutions for 1Tr-NOR flash cell structure and design architectures have been successfully implemented and will be described. In particular, the focus hereinafter is based on the description of how the unique features offered by that cell can be efficiently and effectively integrated into MCUs , which represent one of the major fields fueled by embedded flash capability. In the following sections, after a short introduction devoted to highlighting some peculiar technology features related to 1Tr-NOR integration with state-of-the-art CMOS, three different kind of MCU products will be thoroughly analysed:
  • the secure MCU.

  • the general-purpose/low-power MCU.

  • the automotive MCU.

References

  1. 1.
    L. Baldi, A. Maurelli, Embedded non volatile memories in deep-submicron CMOS, ESSDERC (1999)Google Scholar
  2. 2.
    A. Maurelli, F. Piazza, Embedded memories. ESSDERC/ESSCIRC, Short Course (2005)Google Scholar
  3. 3.
    S. Marangon, A. Maurelli, M. Moroni, L. Baldi, A salicided flash EEPROM for embedded memory applications. ESSDERC (1996)Google Scholar
  4. 4.
    F. Piazza, P. Colombo, P. Ghezzi, V. Lista, A. Maurelli, E. Palumbo, D. Peschiaroli, S. Soleri, A. Di Biase, A. Silvagni, C. Torti, M. Olivo, L. Baldi, 1.8 µm2 high density flash memory for 0.35 µm embedded applications. ESSDERC (1999)Google Scholar
  5. 5.
    L. Larcher, P. Pavan, A. Maurelli, Flash memories for SoC: an overview on system constraints and technology issues. IWSOC Tech. Dig. (2005)Google Scholar
  6. 6.
    F. Piazza, C. Boccaccio, S. Bruyere, R. Cea, B. Clark, N. Degors, C. Collins, A. Gandolfo, A. Gilardini, E. Gomiero, PM. Mans, G. Mastracchio, D. Pacelli, N. Planes, J. Simon, M. Weybright, A. Maurelli, High performance flash memory for 65 nm embedded automotive application. 2010 IEEE international memory workshopGoogle Scholar
  7. 7.
    P. Cappelletti, A. Maurelli, US Patent No 6,410,387 (2002)Google Scholar
  8. 8.
    D. Peschiaroli, A. Maurelli, E. Palumbo, F. Piazza, US Patent No 6,482,698 (2002)Google Scholar
  9. 9.
    P. Cappelletti, A. Maurelli, US Patent No 6,713,347 (2004)Google Scholar
  10. 10.
    A. Maurelli, D. Belot, G. Campardo, SoC and SiP, the Yin and Yang of the Tao for the New Electronic Era. Proceedings of IEEE, vol. 97, no. 1 (2009)Google Scholar
  11. 11.
    A. Maurelli, Status and perspectives of embedded non-volatile memories. 2013 International Conference on IC Design & Technology (ICICDT)Google Scholar
  12. 12.
    S. Yamada et al., Degradation mechanism of flash EEPROM programming after program/erase cycles. IEDM, pp. 23–26 (1993)Google Scholar
  13. 13.
    R.S. Scott, R.A. Dumin et al., Properties of high-voltage generated traps in thin silicon oxide. IEEE Trans. Electr. Devices 43(7), 1133–1143Google Scholar
  14. 14.
    G. Matranga, M. Micciché, R.R. Grasso, Managing of the erasing of operative pages of a flash memory device through service pages. US Patent No 20130272068 (2013)Google Scholar
  15. 15.
    D. Esseni, A. Della Strada, P. Cappelletti, B. Riccó, A new flexible scheme for hot electron programming of non volatile memory cell. IEEE Trans. Electr. Devices 46(1) (1999)Google Scholar
  16. 16.
    C. Ucciardello, A. Conte, S. Pagano, Charge pump circuit using low voltage transistors. US Patent No 20120250421 (2012)Google Scholar
  17. 17.
    A. Conte, M. Giaquinta, High performance digital to analog converter. US Patent No 20150263758 (2015)Google Scholar
  18. 18.
    M. Giaquinta, A. Conte, R.R. Grasso, F.N. Mammoliti, Background power consumption reduction of electronic devices. US Patent No 8675411 (2014)Google Scholar
  19. 19.
    F. La Rosa, Sense amplifier with fast bitline precharge means. US Patent No 8305815 (2012)Google Scholar
  20. 20.
    F. La Rosa, Bitline bias circuit for non-volatile memory devices. US Patent No 6049491 (2000)Google Scholar
  21. 21.
    G. Campardo, Sense amplifier having capacitively coupled input for offset compensation. US Patent No 5729492 (1998)Google Scholar
  22. 22.
    F. La Rosa, Self-timed low power sense amplifier. US Patent No 8363499 (2013)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Antonino Conte
    • 1
  • Fabio Disegni
    • 2
  • Francesco La Rosa
    • 3
  • Alfonso Maurelli
    • 2
    Email author
  1. 1.Microcontrollers and Digital ICs GroupSTMicroelectronicsCataniaItaly
  2. 2.Automotive and Discrete GroupSTMicroelectronicsAgrate BrianzaItaly
  3. 3.Microcontrollers and Digital ICs GroupSTMicroelectronicsRousset CedexFrance

Personalised recommendations