Skip to main content

Fermion Masses and Mixing in SUSY GUTs: Predictive Theories

  • Chapter
  • First Online:
Supersymmetric Grand Unified Theories

Part of the book series: Lecture Notes in Physics ((LNP,volume 939))

  • 1780 Accesses

Abstract

In this chapter we consider two complete SUSY GUTs in four space-time dimensions. In both the SU(5) and SO(10) models the theories include the GUT scale physics of spontaneously breaking the GUT symmetry group, Higgs doublet-triplet splitting and a detailed analysis of gauge coupling unification and nucleon decay. In addition they both include the sector of the theory describing fermion masses and mixing angles which can be tested at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some cases one may want to include additional low energy states or gauge interactions, but I will not discuss these cases here. For example, the non-minimal supersymmetric standard model [NMSSM] includes an extra SM singlet which might be useful for ameliorating the small hierarchy problem. Also, with the addition of vector-like families it could be made consistent with the recent observed diphoton bump at 750 GeV by ATLAS and CMS.

  2. 2.

    We can identify the field S as the Polonyi field which spontaneously breaks SUSY in a supergravity model. It then also generates all scalar masses. S has U(1) charge, Q S  = 0.

  3. 3.

    This is the U(1) Froggatt-Nielsen mechanism [125].

  4. 4.

    In our convention Dirac mass terms are given by L T mR ∗ and the light neutrinos effective mass matrix is m ν m maj −1 m ν T.

  5. 5.

    Note, this is a choice, since if λ 2 = 0, then cosγ = 1 and h d  = H d .

  6. 6.

    See problem 7.

  7. 7.

    We note, the Z 2 symmetry is violated by some of the effective fermion mass operators independent of the Z 2 charges P 1, 2. It can however be extended to a Z 4 symmetry which is then consistent with all terms.

References

  1. Georgi, H., Jarlskog, C.: Phys. Lett. B 86, 297 (1979). doi:10.1016/0370-2693(79)90842-6

    Article  ADS  Google Scholar 

  2. Harvey, J.A., Ramond, P., Reiss, D.B.: Phys. Lett. B 92, 309 (1980). doi:10.1016/0370-2693(80)90270-1

    Article  ADS  Google Scholar 

  3. Harvey, J.A., Reiss, D.B., Ramond, P.: Nucl. Phys. B 199, 223 (1982). doi:10.1016/0550-3213(82)90346-7

    Article  ADS  Google Scholar 

  4. Anderson, G., Raby, S., Dimopoulos, S., Hall, L.J., Starkman, G.D.: Phys. Rev. D 49, 3660 (1994). doi:10.1103/PhysRevD.49.3660

    Article  ADS  Google Scholar 

  5. Dimopoulos, S., Wilczek, F.: Incomplete multiplets in supersymmetric unified models. Report nNmber: Print-81-0600 (SANTA BARBARA), NSF-ITP-82-07 (1981)

    Google Scholar 

  6. Srednicki, M.: Nucl. Phys. B 202, 327 (1982). doi:10.1016/0550-3213(82)90073-6

    Article  ADS  Google Scholar 

  7. Aulakh, C.S., Bajc, B., Melfo, A., Rasin, A., Senjanovic, G.: Nucl. Phys. B 597, 89 (2001). doi:10.1016/S0550-3213(00)00721-5

    Article  ADS  Google Scholar 

  8. Lucas, V., Raby, S.: Phys. Rev. D 54, 2261 (1996). doi:10.1103/PhysRevD.54.2261

    Article  ADS  Google Scholar 

  9. Altarelli, G., Feruglio, F., Masina, I.: J. High Energy Phys. 11, 040 (2000). doi:10.1088/1126-6708/2000/11/040

    Article  ADS  Google Scholar 

  10. Babu, K.S., Pati, J.C., Wilczek, F.: Nucl. Phys. B 566, 33 (2000). doi:10.1016/S0550-3213(99)00589-1

    Article  ADS  Google Scholar 

  11. Babu, K.S., Barr, S.M.: Phys. Rev. D 48, 5354 (1993). doi:10.1103/PhysRevD.48.5354

    Article  ADS  Google Scholar 

  12. Giudice, G.F., Masiero, A.: Phys. Lett. B 206, 480 (1988). doi:10.1016/0370-2693(88)91613-9

    Article  ADS  Google Scholar 

  13. Froggatt, C., Nielsen, H.B.: Nucl. Phys. B 147, 277 (1979). doi:10.1016/0550-3213(79)90316-X

    Article  ADS  Google Scholar 

  14. Lazarides, G., Shafi, Q., Wetterich, C.: Nucl. Phys. B 181, 287 (1981). doi:10.1016/0550-3213(81)90354-0

  15. Aulakh, C.S., Garg, S.K.: Nucl. Phys. B 857, 101 (2012). doi:10.1016/j.nuclphysb.2011.12.003

    Article  ADS  Google Scholar 

  16. Weinberg, S.: Unified gauge theories. In: Zurich 1977, Proceedings, High Energy Physics and Nuclear Structure, Basel 1977, pp. 339–352. Harvard University, Cambridge (1977); Report Number: HUTP-77-A061, C77-08-29.1–2, 14 p.

    Google Scholar 

  17. Kim, H.D., Raby, S., Schradin, L.: Phys. Rev. D 69, 092002 (2004). doi:10.1103/PhysRevD.69.092002

    Article  ADS  Google Scholar 

  18. Hall, L.J., Rasin, A.: Phys. Lett. B 315, 164 (1993). doi:10.1016/0370-2693(93)90175-H

    Article  ADS  Google Scholar 

  19. Babu, K.S., Mohapatra, R.N.: Phys. Rev. Lett. 74, 2418 (1995). doi:10.1103/PhysRevLett.74.2418

    Article  ADS  Google Scholar 

  20. Chen, M.C., Huang, J., Mahanthappa, K.T., Wijangco, A.M.: J. High Energy Phys. 10, 112 (2013). doi:10.1007/JHEP10(2013)112

    Article  ADS  Google Scholar 

  21. Babu, K.S., Pati, J.C., Tavartkiladze, Z.: J. High Energy Phys. 06, 084 (2010). doi:10.1007/JHEP06(2010)084

    Article  ADS  Google Scholar 

  22. Barr, S.M., Raby, S.: Phys. Rev. Lett. 79, 4748 (1997). doi:10.1103/PhysRevLett.79.4748

    Article  ADS  Google Scholar 

  23. Dvali, G.R., Pokorski, S.: Phys. Rev. Lett. 78, 807 (1997). doi:10.1103/PhysRevLett.78.807

    Article  ADS  Google Scholar 

  24. Maekawa, N., Yamashita, T.: Prog. Theor. Phys. 108, 719 (2002). doi:10.1143/PTP.108.719

    Article  ADS  Google Scholar 

  25. Dine, M., Seiberg, N., Witten, E.: Nucl. Phys. B 289, 589 (1987). doi:10.1016/0550-3213(87)90395-6

    Article  ADS  Google Scholar 

  26. Pouliot, P., Seiberg, N.: Phys. Lett. B 318, 169 (1993). doi:10.1016/0370-2693(93)91801-S

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raby, S. (2017). Fermion Masses and Mixing in SUSY GUTs: Predictive Theories. In: Supersymmetric Grand Unified Theories. Lecture Notes in Physics, vol 939. Springer, Cham. https://doi.org/10.1007/978-3-319-55255-2_9

Download citation

Publish with us

Policies and ethics