Skip to main content

SUSY Breaking and Moduli Stabilization

  • Chapter
  • First Online:
Supersymmetric Grand Unified Theories

Part of the book series: Lecture Notes in Physics ((LNP,volume 939))

  • 1773 Accesses

Abstract

In string models all couplings, i.e. both gauge and Yukawa couplings, depend on the values of moduli. In addition, the size of the extra 6 dimensions also depend on the size of moduli. Finally, the value of the GUT symmetry breaking scale and proton decay rates depend on the size of the extra dimensions. In addition, in order to stabilize all the moduli one must necessarily spontaneously break supersymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Racetrack models for SUSY breaking are discussed in [473475].

  2. 2.

    Note, the variation of the dilaton provides the Green-Schwarz cancelation of the U(1) A anomaly.

  3. 3.

    For an excellent review with many references, see [495].

  4. 4.

    These terms arise as a consequence of world-sheet instantons in a string calculation. In fact, world sheet instantons typically result in more general modular functions [488494].

  5. 5.

    Note, the constants \(\gamma _{T_{i}},\ \gamma _{U}\) can quite generally have either sign, depending upon the modular weights of the fields at the particular vertex.

  6. 6.

    The Dynkin index a (rep I ) ≡ T R defined earlier in Eq. (5.38). Thus if T a I are the generators of the group G a in the representation I, then we have Tr(T a I T b I) =  a (rep I )δ ab .

  7. 7.

    Note, for clarity, this is just a toy model which is not derived directly from any particular string model.

  8. 8.

    In fact, one of the SU(4) quark- anti-quark pairs remained massless in the two “benchmark” models.

  9. 9.

    There is a check on the consistency of this approach: at the end of the day, after calculating the VEVs of the scalars, we can verify that the mass terms for the quarks are indeed of the correct magnitude.

  10. 10.

    The meson field, \(Q_{a}\tilde{Q}_{a}\) is assumed to be diagonal and proportional to the identity in flavor space. Thus not breaking the \(SU(N_{f_{a}})\) flavor symmetry.

  11. 11.

    The coefficient A [Eq. (24.39)] is an implicit function of all other non-vanishing chiral singlet VEVs which would be necessary to satisfy the modular invariance constraints, i.e. A = A(〈ϕ I 〉). If one re-scales the U(1) A charges, \(q_{\phi _{i}},q_{\chi } \rightarrow q_{\phi _{i}}/r,q_{\chi }/r\), then the U(1) A constraint is satisfied with r = 15p (assuming no additional singlets in A). Otherwise we may let r and p be independent. This re-scaling does not affect our analysis, since the vacuum value of the ϕ i , χ term in the superpotential vanishes.

  12. 12.

    The fields entering w 0 have string scale mass.

  13. 13.

    Note, we have chosen to keep the form of the Kähler potential for this single T modulus with the factor of 3, so as to maintain the approximate no-scale behavior.

  14. 14.

    Note, the constants b,  b 2 can have either sign. For the case with b,  b 2 > 0 the superpotential for T is racetrack-like. However for b,  b 2 < 0 the scalar potential for T diverges as T goes to zero or infinity and compactification is guaranteed [509, 513].

  15. 15.

    Holomorphic gauge invariant monomials span the moduli space of supersymmetric vacua. One such monomial is necessary to cancel the Fayet-Illiopoulos D-term (see Sect. 24.5).

  16. 16.

    We have also found solutions for the case with N = 4,  N f  = 7 which is closer to the “mini-landscape” benchmark models. Note, when N f  > N we may still use the same formalism, since we assume that all the \(Q,\tilde{Q}\) s get mass much above the effective QCD scale.

  17. 17.

    Note the parameter relation r = 15p in Table 24.2 is derived using U(1) A invariance and the assumption that no other fields with non-vanishing U(1) A charge enter into the effective mass matrix for hidden sector quarks. We have also allowed for two cases where this relation is not satisfied.

  18. 18.

    The fields χ and ϕ 1 cannot be expressed in polar coordinates as they receive zero VEV, and cannot be canonically normalized in this basis.

  19. 19.

    Note, with just dilaton and moduli SUSY breaking we can define \(\frac{F^{S}} {(S+\bar{S})} = -\sqrt{3}m_{3/2}\sin (\theta )e^{-i\phi _{S}},\; \frac{F^{T_{i}}} {(T_{i}+\bar{T}_{i})} = -\sqrt{3}m_{3/2}\cos (\theta )e^{-i\phi _{i}}\varTheta _{i}\) with i = 1 3 Θ i 2 = 1. Then A IJK (0) is independent of the moduli VEVs, only depending on the mixing angles, θ,  ϕ S ,  Θ i ,  ϕ i .

  20. 20.

    In estimating this result, we have assumed that the mass terms of the Pauli-Villars fields do not depend on the SUSY breaking singlet field ϕ 2, and that the modular weights of the Pauli-Villars fields obey specific properties.

  21. 21.

    This is due to the assumed modular weight of the field ϕ 2.

  22. 22.

    In racetrack models F S is suppressed by more than an order of magnitude. In these cases \(F_{\phi _{2}}\) is dominant [466].

  23. 23.

    I am assuming that only Kähler moduli, T i ,  i = 1, 2, 3, contribute to SUSY breaking, i.e. the complex structure moduli, U i ,  i = 1, 2, 3, have vanishing F terms.

References

  1. Fayet, P., Iliopoulos, J.: Phys. Lett. B 51, 461 (1974). doi:10.1016/0370-2693(74)90310-4

    Article  ADS  Google Scholar 

  2. Slansky, R.: Phys. Rep. 79, 1 (1981). doi:10.1016/0370-1573(81)90092-2

    Article  ADS  MathSciNet  Google Scholar 

  3. Giudice, G.F., Masiero, A.: Phys. Lett. B 206, 480 (1988). doi:10.1016/0370-2693(88)91 613-9

    Article  ADS  Google Scholar 

  4. Dine, M., Seiberg, N., Witten, E.: Nucl. Phys. B 289, 589 (1987). doi:10.1016/0550-3213(87) 90395-6

    Article  ADS  Google Scholar 

  5. Choi, K., Falkowski, A., Nilles, H.P., Olechowski, M.: Nucl. Phys. B 718, 113 (2005). doi:10.1016/j.nuclphysb.2005.04.032

    Article  ADS  Google Scholar 

  6. Choi, K., Jeong, K.S., Kobayashi, T., Okumura, K.I.: Phys. Lett. B 633, 355 (2006). doi:10.1016/j.physletb.2005.11.078

    Article  ADS  Google Scholar 

  7. Lowen, V., Nilles, H.P.: Phys. Rev. D 77, 106007 (2008). doi:10.1103/PhysRevD.77.106007

    Article  ADS  MathSciNet  Google Scholar 

  8. Kappl, R., Petersen, B., Raby, S., Ratz, M., Schieren, R., Vaudrevange, P.K.S.: Nucl. Phys. B 847, 325 (2011). doi:10.1016/j.nuclphysb.2011.01.032

    Article  ADS  Google Scholar 

  9. Kappl, R., Nilles, H.P., Ramos-Sanchez, S., Ratz, M., Schmidt-Hoberg, K., Vaudrevange, P.K.S.: Phys. Rev. Lett. 102, 121602 (2009). doi:10.1103/PhysRevLett.102.121602

    Article  ADS  MathSciNet  Google Scholar 

  10. Kobayashi, T., Raby, S., Zhang, R.J.: Nucl. Phys. B 704, 3 (2005). doi:10.1016/j.nuclphysb. 2004.10.035

    Article  ADS  Google Scholar 

  11. Lebedev, O., Nilles, H.P., Raby, S., Ramos-Sanchez, S., Ratz, M., Vaudrevange, P.K.S., Wingerter, A.: Phys. Lett. B 645, 88 (2007). doi:10.1016/j.physletb.2006.12.012

    Article  ADS  MathSciNet  Google Scholar 

  12. Lebedev, O., Nilles, H.P., Raby, S., Ramos-Sanchez, S., Ratz, M., Vaudrevange, P.K.S., Wingerter, A.: Phys. Rev. D 77, 046013 (2008). doi:10.1103/PhysRevD.77.046013

    Article  ADS  Google Scholar 

  13. Lebedev, O., Nilles, H.P., Ramos-Sanchez, S., Ratz, M., Vaudrevange, P.K.S.: Phys. Lett. B 668, 331 (2008). doi:10.1016/j.physletb.2008.08.054

    Article  ADS  MathSciNet  Google Scholar 

  14. Buchmuller, W., Hamaguchi, K., Lebedev, O., Ratz, M.: Phys. Rev. Lett. 96, 121602 (2006). doi:10.1103/PhysRevLett.96.121602

    Article  ADS  MathSciNet  Google Scholar 

  15. Buchmuller, W., Hamaguchi, K., Lebedev, O., Ratz, M.: Nucl. Phys. B 785, 149 (2007). doi:10.1016/j.nuclphysb.2007.06.028

    Article  ADS  Google Scholar 

  16. Lebedev, O., Nilles, H.P., Raby, S., Ramos-Sanchez, S., Ratz, M., Vaudrevange, P.K.S., Wingerter, A.: Phys. Rev. Lett. 98, 181602 (2007). doi:10.1103/PhysRevLett.98.181602

    Article  ADS  MathSciNet  Google Scholar 

  17. Dundee, B., Raby, S., Wingerter, A.: Phys. Rev. D 78, 066006 (2008). doi:10.1103/PhysRevD.78.066006

    Article  ADS  Google Scholar 

  18. Ibanez, L.E., Lust, D.: Nucl. Phys. B 382, 305 (1992). doi:10.1016/0550-3213(92)90189-I

    Article  ADS  Google Scholar 

  19. Luty, M.A., Taylor, W.: Phys. Rev. D 53, 3399 (1996). doi:10.1103/PhysRevD.53.3399

    Article  ADS  MathSciNet  Google Scholar 

  20. Dundee, B., Raby, S., Westphal, A.: Phys. Rev. D 82, 126002 (2010). doi:10.1103/PhysRevD.82.126002

    Article  ADS  Google Scholar 

  21. Affleck, I., Dine, M., Seiberg, N.: Nucl. Phys. B 241, 493 (1984). doi:10.1016/0550-3213 (84)90058-0

    Article  ADS  Google Scholar 

  22. de Carlos, B., Gurrieri, S., Lukas, A., Micu, A.: J. High Energy Phys. 03, 005 (2006). doi:10.1088/1126-6708/2006/03/005

    Article  Google Scholar 

  23. Choi, K., Jeong, K.S.: J. High Energy Phys. 08, 007 (2006). doi:10.1088/1126-6708/2006/ 08/007

    Article  ADS  Google Scholar 

  24. Gallego, D., Serone, M.: J. High Energy Phys. 08, 025 (2008). doi:10.1088/1126-6708/2008/ 08/025

    Article  ADS  Google Scholar 

  25. Dudas, E., Mambrini, Y., Pokorski, S., Romagnoni, A., Trapletti, M.: J. High Energy Phys. 03, 011 (2009). doi:10.1088/1126-6708/2009/03/011

    Article  ADS  Google Scholar 

  26. Anderson, L.B., Gray, J., Lukas, A., Ovrut, B.: Phys. Rev. D 83, 106011 (2011). doi:10.1103/ PhysRevD.83.106011

    Article  ADS  Google Scholar 

  27. Kachru, S., Kallosh, R., Linde, A.D., Trivedi, S.P.: Phys. Rev. D 68, 046005 (2003). doi:10.1103/ PhysRevD.68.046005

    Article  ADS  MathSciNet  Google Scholar 

  28. Falkowski, A., Lebedev, O., Mambrini, Y.: J. High Energy Phys. 11, 034 (2005). doi:10.1088/ 1126-6708/2005/11/034

    Article  ADS  Google Scholar 

  29. Acharya, B.S., Bobkov, K., Kane, G.L., Kumar, P., Shao, J.: Phys. Rev. D 76, 126010 (2007). doi:10.1103/PhysRevD.76.126010

    Article  ADS  MathSciNet  Google Scholar 

  30. Acharya, B.S., Kane, G., Kuflik, E.: Int. J. Mod. Phys. A 29, 1450073 (2014). doi:10.1142/ S0217751X14500730

    Article  ADS  Google Scholar 

  31. Krasnikov, N.V.: Phys. Lett. B 193, 37 (1987). doi:10.1016/0370-2693(87)90452-7

    Article  ADS  Google Scholar 

  32. Casas, J.A., Lalak, Z., Munoz, C., Ross, G.G.: Nucl. Phys. B 347, 243 (1990). doi:10.1016/ 0550-3213(90)90559-V

    Article  ADS  Google Scholar 

  33. Binetruy, P., Dudas, E.: Phys. Lett. B 389, 503 (1996). doi:10.1016/S0370-2693(96)01305-6

    Article  ADS  Google Scholar 

  34. Lalak, Z.: Nucl. Phys. B 521, 37 (1998). doi:10.1016/S0550-3213(98)00213-2

    Article  ADS  Google Scholar 

  35. Green, M.B., Schwarz, J.H.: Phys. Lett. B 149, 117 (1984). doi:10.1016/0370-2693(84)91 565-X

    Article  ADS  MathSciNet  Google Scholar 

  36. Dine, M., Ichinose, I., Seiberg, N.: Nucl. Phys. B 293, 253 (1987). doi:10.1016/0550-3213 (87)90072-1

    Article  ADS  Google Scholar 

  37. Witten, E.: Phys. Lett. B 155, 151 (1985). doi:10.1016/0370-2693(85)90976-1

    Article  ADS  MathSciNet  Google Scholar 

  38. Lauer, J., Mas, J., Nilles, H.P.: Phys. Lett. B 226, 251 (1989). doi:10.1016/0370-2693 (89)91190-8

    Article  ADS  MathSciNet  Google Scholar 

  39. Stieberger, S., Jungnickel, D., Lauer, J., Spalinski, M.: Mod. Phys. Lett. A 7, 3059 (1992). doi:10.1142/S0217732392002457

    Article  ADS  Google Scholar 

  40. Bailin, D., Love, A.: Phys. Rep. 315, 285 (1999). doi:10.1016/S0370-1573(98)00126-4

    Article  ADS  MathSciNet  Google Scholar 

  41. Dixon, L.J., Kaplunovsky, V., Louis, J.: Nucl. Phys. B 329, 27 (1990). doi:10.1016/0550-3213 (90)90057-K

    Article  ADS  Google Scholar 

  42. Hamidi, S., Vafa, C.: Nucl. Phys. B 279, 465 (1987). doi:10.1016/0550-3213(87)90006-X

    Article  ADS  Google Scholar 

  43. Vaudrevange, P.K.S.: Grand unification in the heterotic brane world. Ph.D. thesis, Bonn University (2008). http://inspirehep.net/record/805663/files/arXiv:0812.3503.pdf

  44. Love, A., Todd, S.: Nucl. Phys. B 481, 253 (1996). doi:10.1016/S0550-3213(96)90133-9

    Article  ADS  Google Scholar 

  45. Bailin, D., Love, A., Sabra, W.A., Thomas, S.: Mod. Phys. Lett. A 9, 2543 (1994). doi:10.1142/ S0217732394002409

    Article  ADS  Google Scholar 

  46. Dixon, L.J., Kaplunovsky, V., Louis, J.: Nucl. Phys. B 355, 649 (1991). doi:10.1016/0550- 3213(91)90490-O

    Article  ADS  Google Scholar 

  47. Derendinger, J.P., Ferrara, S., Kounnas, C., Zwirner, F.: Nucl. Phys. B 372, 145 (1992). doi:10.1016/0550-3213(92)90315-3

    Article  ADS  Google Scholar 

  48. Ibanez, L.E., Lust, D., Ross, G.G.: Phys. Lett. B 272, 251 (1991). doi:10.1016/0370-2693 (91)91828-J

    Article  ADS  Google Scholar 

  49. Lust, D., Munoz, C.: Phys. Lett. B 279, 272 (1992). doi:10.1016/0370-2693(92)90392-H

    Article  ADS  MathSciNet  Google Scholar 

  50. Kaplunovsky, V., Louis, J.: Nucl. Phys. B 444, 191 (1995). doi:10.1016/0550-3213(95) 00172-O

    Article  ADS  Google Scholar 

  51. de Carlos, B., Casas, J.A., Munoz, C.: Phys. Lett. B 263, 248 (1991). doi:10.1016/0370- 2693(91)90595-H

    Article  ADS  Google Scholar 

  52. Font, A., Ibanez, L.E., Lust, D., Quevedo, F.: Phys. Lett. B 245, 401 (1990). doi:10.1016/ 0370-2693(90)90665-S

    Article  ADS  MathSciNet  Google Scholar 

  53. de Carlos, B., Casas, J.A., Munoz, C.: Nucl. Phys. B 399, 623 (1993). doi:10.1016/0550-3213 (93)90512-N

    Article  ADS  Google Scholar 

  54. Cvetic, M., Font, A., Ibanez, L.E., Lust, D., Quevedo, F.: Nucl. Phys. B 361, 194 (1991). doi:10.1016/0550-3213(91)90622-5

    Article  ADS  Google Scholar 

  55. Ferrara, S., Kounnas, C., Zwirner, F.: Nucl. Phys. B 429, 589 (1994). doi:10.1016/0550- 3213(94)00494-Y, 10.1016/0550-3213(94)90154-6 [Erratum: Nucl. Phys. B 433, 255 (1995)]

  56. Nilles, H.P., Raby, S.: Nucl. Phys. B 198, 102 (1982). doi:10.1016/0550-3213(82)90547-8

    Article  ADS  Google Scholar 

  57. Kim, J.E.: Phys. Rev. Lett. 43, 103 (1979). doi:10.1103/PhysRevLett.43.103

    Article  ADS  Google Scholar 

  58. Zhitnitsky, A.R.: Sov. J. Nucl. Phys. 31, 260 (1980) [Yad. Fiz. 31, 497 (1980)]

    Google Scholar 

  59. Brignole, A., Ibanez, L.E., Munoz, C.: Nucl. Phys. B 422, 125 (1994). doi:10.1016/0550- 3213(94)00600-J, 10.1016/0550-3213(94)00068-9 [Erratum: Nucl. Phys. B 436, 747 (1995)]

  60. Brignole, A., Ibanez, L.E., Munoz, C., Scheich, C.: Z. Phys. C 74, 157 (1997). doi:10.1007/ s002880050379

    Article  Google Scholar 

  61. Brignole, A., Ibanez, L.E., Munoz, C.: Adv. Ser. Dir. High Energy Phys. 21, 244 (2010)

    Article  ADS  Google Scholar 

  62. Binetruy, P., Gaillard, M.K., Nelson, B.D.: Nucl. Phys. B 604, 32 (2001). doi:10.1016/ S0550-3213(00)00759-8

    Article  ADS  Google Scholar 

  63. Binetruy, P., Birkedal-Hansen, A., Mambrini, Y., Nelson, B.D.: Eur. Phys. J. C 47, 481 (2006). doi:10.1140/epjc/s2006-02541-7

    Article  ADS  Google Scholar 

  64. Cleaver, G., Cvetic, M., Espinosa, J.R., Everett, L.L., Langacker, P.: Nucl. Phys. B 525, 3 (1998). doi:10.1016/S0550-3213(98)00277-6

    Article  ADS  Google Scholar 

  65. Dundee, B., Raby, S., Wingerter, A.: Phys. Rev. D 79, 047901 (2009). doi:10.1103/PhysRevD. 79.047901

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raby, S. (2017). SUSY Breaking and Moduli Stabilization. In: Supersymmetric Grand Unified Theories. Lecture Notes in Physics, vol 939. Springer, Cham. https://doi.org/10.1007/978-3-319-55255-2_24

Download citation

Publish with us

Policies and ethics