Skip to main content

SUSY GUTs in 6D: Precise Gauge Coupling Unification

  • Chapter
  • First Online:
  • 1767 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 939))

Abstract

In the previous chapter we argued that precise gauge coupling unification [PGCU], i.e. the absence of threshold corrections at the GUT scale, requires certain specific soft SUSY breaking masses at the weak scale. In particular, lighter gluinos than expected from unification of gaugino masses. In this chapter we argue that non-local GUT breaking will, in general, eliminate one-loop GUT threshold corrections. This is because the compactification scale is the scale of GUT symmetry breaking [342344]. In this chapter (based on [345]) we present a 6D model with SU(6) gauge symmetry and N=2 supersymmetry. In terms of 4D language, such a 6D theory with N=2 SUSY contains one vector adjoint and three chiral adjoints. The model has gauge-Higgs unification with the Higgs doublets coming from one of the chiral adjoints. The group SU(6) is broken to SU(5) × U(1) X via orbifold boundary conditions. Then SU(5) is broken to the Standard Model gauge group and, at the same time, Higgs doublet-triplet splitting is accomplished by a Wilson line. The two extra-dimensions are compactified on an orbifold that can be characterized as a sphere with a cross-cap (topologically equivalent to the manifold RP 2), as described in [342344]. Quarks and leptons can be in the bulk (or localized at the fixed points), and their Yukawa couplings to the Higgs are localized at the orbifold fixed points which only retain an N=1 SUSY in 4D (see for example [313, 346] where this phenomenon has been discussed).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Wilson line breaking on a smooth RP 2 is certainly non-local breaking. On the orbifold version of RP 2 we shall see that the Wilson line breaking is not completely non-local, although the results, as we shall show, are consistent with non-local breaking of the GUT symmetry.

  2. 2.

    It appears that fermions and supersymmetry can be defined on some non-orientable manifolds. See, for example, some general theorems on Pin manifolds [347349] and some specific examples of fermions on M 4RP 2 [350352].

  3. 3.

    This is the remaining gauge symmetry of the supersymmetric theory in the Wess-Zumino gauge.

  4. 4.

    This constant background field is consistent with the parity operation A 5 → −A 5 with the additional periodic gauge transformation, such that \(A_{5}^{{\prime}} = U(x_{5})(-A_{5})U(x_{5})^{\dag }- iU(x_{5})\partial _{x_{5}}U(x_{5})^{\dag }\equiv A_{5}\) and \(U(x_{5}) = \text{exp}\left (-i \frac{x_{5}} {R_{5}} \frac{T} {2} \right )\) is periodic under x 5 → x 5 + 2π R 5 up to an element of the center of the group SU(6) [291].

  5. 5.

    In our case we can now identify \(G(\mathcal{T}_{5}) = G(\mathcal{T}_{6}) = e^{i \frac{\pi }{2} I_{\rho }}\). There is, however, an alternative possibility with \(G(\mathcal{T}_{5}) = G(\mathcal{T}_{6}) =\mathbb{1}\) and \(G(\mathcal{Z}^{{\prime}}{}^{2}) =\mathbb{1}\). This is the possibility discussed in the paper by Hebecker [342]. This choice leads to additional massless vector-like exotics which we avoid in our analysis.

  6. 6.

    In what follows, we shall ignore any explicit gauge symmetry breaking localized at the fixed point, F 2. This might be due to terms such as \(- \frac{1} {4g_{a}^{2}} \int d^{4}xF_{a}^{\mu \nu }F_{\mu \nu a},a = 1, 2, 3\). In the orbifold field theory these will be suppressed by the volume of the extra dimensions, while in string theories these do not occur. Moreover, in a smooth RP 2 these would not exist.

  7. 7.

    We shall consider this \(\mathbb{Z}_{4}^{R}\) symmetry in more detail in a later chapter.

  8. 8.

    We have followed the analysis of [354] in what follows. The details can be found in Appendix 1.

  9. 9.

    Note, on the orbifold fixed point F 2 the gauge group is only [SU(3) × SU(2) × U(1) Y ] × U(1) X . Thus gauge kinetic operators localized at these fixed points do not need to respect the SU(5) symmetry. However we will assume that the bulk gauge kinetic terms dominate over these localized terms when determining the low energy gauge couplings.

  10. 10.

    We have complete N=4 SUSY in 4D when we have one vector multiplet and three chiral multiplets. In terms of the N=1 fields in 4D, the beta-function coefficients are given by:

    $$\displaystyle{ b_{G} = 3C_{2}(G) - N_{\text{chiral}}T(R) }$$
    (18.35)
  11. 11.

    When M 6 ≪ M 5 we have KK modes transforming as Higgs doublets and chiral adjoints under the SM gauge group.

References

  1. Dermisek, R., Raby, S., Nandi, S.: Nucl. Phys. B 641, 327 (2002). doi:10.1016/S0550-3213 (02)00611-9

    Article  ADS  Google Scholar 

  2. Hall, L.J., Murayama, H., Nomura, Y.: Nucl. Phys. B 645, 85 (2002). doi:10.1016/S0550- 3213(02)00816-7

  3. Hall, L.J., Nomura, Y.: Phys. Rev. D 64, 055003 (2001). doi:10.1103/PhysRevD.64.055003

    Article  ADS  Google Scholar 

  4. Mirabelli, E.A., Peskin, M.E.: Phys. Rev. D 58, 065002 (1998). doi:10.1103/PhysRevD.58.06 5002

    Article  ADS  MathSciNet  Google Scholar 

  5. Raby, S., Ratz, M., Schmidt-Hoberg, K.: Phys. Lett. B 687, 342 (2010). doi:10.1016/j. physletb.2010.03.060

    Article  ADS  Google Scholar 

  6. Hebecker, A.: J. High Energy Phys. 01, 047 (2004). doi:10.1088/1126-6708/2004/01/047

    Article  ADS  MathSciNet  Google Scholar 

  7. Trapletti, M.: Mod. Phys. Lett. A 21, 2251 (2006). doi:10.1142/S0217732306021785

    Article  ADS  MathSciNet  Google Scholar 

  8. Anandakrishnan, A., Raby, S.: Nucl. Phys. B 868, 627 (2013). doi:10.1016/j.nuclphysb.2012. 12.001

    Article  ADS  Google Scholar 

  9. Hall, L.J., Nomura, Y., Tucker-Smith, D.: Nucl. Phys. B 639, 307 (2002). doi:10.1016/S0550- 3213(02)00539-4

  10. Dabrowski, L., Trautman, A.: J. Math. Phys. 27, 2022 (1986). doi:10.1063/1.527021

    Article  ADS  MathSciNet  Google Scholar 

  11. Friedrich, T., Trautman, A.: Spin spaces, Lipschitz groups, and spinor bundles. Report Number: SFB-288-362 (1999)

    Google Scholar 

  12. Dohi, H., Oda, K.Y.: Phys. Lett. B 692, 114 (2010). doi:10.1016/j.physletb.2010.07.020

    Article  ADS  MathSciNet  Google Scholar 

  13. Dohi, H., Kakuda, T., Nishiwaki, K., Oda, K.Y., Okuda, N.: Afr. Rev. Phys. 9, 0069 (2014)

    Google Scholar 

  14. Lee, H.M., Raby, S., Ratz, M., Ross, G.G., Schieren, R., Schmidt-Hoberg, K., Vaudrevange, P.K.S.: Phys. Lett. B 694, 491 (2011). doi:10.1016/j.physletb.2010.10.038

    Article  ADS  Google Scholar 

  15. Ghilencea, D.M.: Nucl. Phys. B 670, 183 (2003). doi:10.1016/j.nuclphysb.2003.08.011

    Article  ADS  MathSciNet  Google Scholar 

  16. Dundee, B., Raby, S.: On the string coupling in a class of stringy orbifold GUTs. Report Number: OHSTPY-HEP-T-08-004 (2008). arXiv:0808.0992

    Google Scholar 

  17. Anandakrishnan, A., Raby, S.: Phys. Rev. D 83, 075008 (2011). doi:10.1103/PhysRevD. 83.075008

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 1: Kaluza-Klein Integrals

In order to compute the threshold corrections coming from an infinite tower of Kaluza-Klein states, we would like to evaluate the following integral (see Eq. (18.30)):

$$\displaystyle{ \sum _{(m,n)\in Z}\int _{\xi }^{\infty }\frac{dt} {t} e^{-\pi t\frac{M_{(m,n)}^{2}} {\mu ^{2}} }e^{-\pi \chi t} }$$
(18.41)

where, χ and ξ are IR and UV regulators, and the M (m, n) are the masses of the (m, n)th KK mode. In the presence of Wilson lines they are given by:

$$\displaystyle{ M_{(m,n)}^{2} = \frac{(m +\rho _{1})^{2}} {R_{5}^{2}} + \frac{(n +\rho _{2})^{2}} {R_{6}^{2}} }$$
(18.42)

where in the scenario that we have, ρ 1 can be either 0 or 2 and ρ 2 is always 0. In general, we can solve the integral following Ghilencea [354] who evaluates the integral for the cases of one and two extra-dimensions. Again, in the current scenario that we have, we find that we only need to evaluate this integral in its one-dimensional limit. We follow Ghilencea and evaluate a 1-dimensional Kaluza-Klein integral of the form:

$$\displaystyle{ \mathcal{R}_{1}\left [\xi,\rho,\delta \right ] =\sum _{ m\in Z}^{^{{\prime}} }\int _{\xi }^{\infty }\frac{dt} {t} e^{-\pi t\left [(m+\rho )^{2}+\delta \right ] } }$$
(18.43)

where the prime over the summation in the second term represents that m ≠ 0, but runs over all other integer values.

We can make use of the Poisson re-summation formula:

$$\displaystyle{ \sum _{n\in Z}e^{-\pi A(n+\sigma )^{2} } = \frac{1} {\sqrt{A}}\sum _{\tilde{n}\in Z}e^{-\pi A^{-1}\tilde{n}^{2}+2i\pi \tilde{n}\sigma } }$$
(18.44)

to evaluate this integral. We have,

$$\displaystyle\begin{array}{rcl} \mathcal{R}_{1}\left [\xi,\rho,\delta \right ]& =& \int _{\xi }^{\infty }\frac{dt} {t} \left [-e^{-\pi t\rho ^{2} } +\sum _{m}e^{-\pi t(m+\rho )^{2} }\right ]e^{-\pi \delta t} \\ & =& \int _{\xi }^{\infty }\frac{dt} {t} \left [-e^{-\pi t\rho ^{2} } + \frac{1} {\sqrt{t}} + \frac{1} {\sqrt{t}}\sum _{m}^{^{{\prime}} }e^{-\pi m^{2}/t+2i\pi m\rho }\right ]e^{-\pi \delta t} \\ & =& -\varGamma \left [0,\pi \xi (\delta +\rho ^{2})\right ] + \frac{2e^{-\pi \delta \xi }} {\sqrt{\xi }} + 2\pi \sqrt{\delta }\text{Erf}\left [\sqrt{\pi \delta \xi }\right ] \\ & & -\text{log}\vert 2\ \text{sin}\pi (\rho +i\sqrt{\delta })\vert ^{2} {}\end{array}$$
(18.45)

where, it has been assumed that ξ ≪ 1 while evaluating the integral \(\int _{\xi }^{\infty }\frac{dt} {t} e^{-\pi m^{2}/t-\pi \delta t }\) and Ghilencea [354] shows that the error by doing so vanishes when ξ is small.

We summarize the result of this integral in various useful limits:

  • (m,n) = (0,0)

    $$\displaystyle\begin{array}{rcl} \int _{\xi }^{\infty }\frac{dt} {t} e^{-\pi t \frac{\rho _{1}^{2}} {R_{5}^{2}\mu ^{2}} }e^{-\pi \chi t}& =& \int _{\xi }^{\infty }\frac{dt} {t} e^{-\pi (\rho +\chi )t} \\ & =& \varGamma \left [0,\pi \xi (\chi +\rho )\right ] {}\end{array}$$
    (18.46)

    where \(\rho = \frac{\rho _{1}^{2}} {R_{5}^{2}\mu ^{2}} + \frac{\rho _{2}^{2}} {R_{6}^{2}\mu ^{2}}\)

  • n=0, m ≠ 0

    $$\displaystyle\begin{array}{rcl} \sum _{m\in Z}^{^{{\prime}} }\int _{\xi }^{\infty }\frac{dt} {t} e^{-\pi t\frac{\frac{(m+\rho _{1})^{2}} {R_{5}^{2}} + \frac{\rho _{2}^{2}} {R_{6}^{2}} } {\mu ^{2}} }e^{-\pi \chi t}& =& \sum _{m\in Z}^{^{{\prime}} }\int _{\xi \nu _{1}}^{\infty }\frac{dt} {t} e^{-\pi t(m+\rho _{1})^{2} }e^{-\pi \frac{\delta _{1}} {\nu _{1}} t} \\ & =& \mathcal{R}_{1}\left [\xi \nu _{1},\rho _{1}, \frac{\delta _{1}} {\nu _{1}}\right ] {}\end{array}$$
    (18.47)

    where, \(\nu _{1} = \frac{1} {\mu ^{2}R_{5}^{2}}\) and \(\delta _{1} =\chi + \frac{\rho _{2}^{2}} {\mu ^{2}R_{6}^{2}}\).

  • m=0, n ≠ 0

    Similar to the previous case with some parameters interchanged, we have:

    $$\displaystyle\begin{array}{rcl} \sum _{n\in Z}^{^{{\prime}} }\int _{\xi }^{\infty }\frac{dt} {t} e^{-\pi t\frac{ \frac{\rho _{1}^{2}} {R_{5}^{2}} + \frac{(n+\rho _{2})^{2}} {R_{6}^{2}} } {\mu ^{2}} }e^{-\pi \chi t}& =& \sum _{n\in Z}^{^{{\prime}} }\int _{\xi \nu _{2}}^{\infty }\frac{dt} {t} e^{-\pi t(n+\rho _{2})^{2} }e^{-\pi \frac{\delta _{2}} {\nu _{2}} t} \\ & =& \mathcal{R}_{1}\left [\xi \nu _{2},\rho _{2}, \frac{\delta _{2}} {\nu _{2}}\right ] {}\end{array}$$
    (18.48)

    where, \(\nu _{2} = \frac{1} {\mu ^{2}R_{6}^{2}}\) and \(\delta _{2} =\chi + \frac{\rho _{1}^{2}} {\mu ^{2}R_{5}^{2}}\)

  • Since the spectrum we are interested in has states that live either at odd or even integers, it is write down the result of this integral in these limit that the summation is over either even or odd integers:

    n = 0, m ≠ 0; m = even

    $$\displaystyle\begin{array}{rcl} \mathcal{R}_{1}^{E}\left [\xi \nu _{ 1},\rho _{1}, \frac{\delta _{1}} {\nu _{1}}\right ]& =& \sum _{m\in Z}^{^{{\prime}} }\int _{\xi }^{\infty }\frac{dt} {t} e^{-\pi t\frac{\frac{(2m+\rho _{1})^{2}} {R_{5}^{2}} + \frac{\rho _{2}^{2}} {R_{6}^{2}} } {\mu ^{2}} }e^{-\pi \chi t} \\ & =& \sum _{m\in Z}^{^{{\prime}} }\int _{\xi }^{\infty }\frac{dt} {t} e^{-4\pi t\frac{\frac{(m+ \frac{\rho _{1}} {2} )^{2}} {R_{5}^{2}} + \frac{\rho _{2}^{2}} {4R_{6}^{2}} } {\mu ^{2}} }e^{-\pi \chi t/4} \\ & =& \sum _{m\in Z}^{^{{\prime}} }\int _{4\xi \nu _{1}}^{\infty }\frac{dt} {t} e^{-\pi t(m+\rho _{1})^{2} }e^{-\pi \frac{\delta _{1}} {4\nu _{1}} t} \\ & =& \mathcal{R}_{1}\left [4\xi \nu _{1}, \frac{\rho _{1}} {2}, \frac{\delta _{1}} {4\nu _{1}}\right ] {}\end{array}$$
    (18.49)

    where, \(\nu _{1} = \frac{1} {\mu ^{2}R_{5}^{2}}\) and \(\delta _{1} =\chi + \frac{\rho _{2}^{2}} {\mu ^{2}R_{6}^{2}}\) is the same as previously defined.

    n = 0, m ≠ 0; m = odd

    $$\displaystyle\begin{array}{rcl} \mathcal{R}_{1}^{O}\left [\xi \nu _{ 1},\rho _{1}, \frac{\delta _{1}} {\nu _{1}}\right ]& =& \sum _{m\in Z}\int _{\xi }^{\infty }\frac{dt} {t} e^{-\pi t\frac{\frac{(2m-1+\rho _{1})^{2}} {R_{5}^{2}} + \frac{\rho _{2}^{2}} {R_{6}^{2}} } {\mu ^{2}} }e^{-\pi \chi t} \\ & =& \sum _{m\in Z}\int _{\xi }^{\infty }\frac{dt} {t} e^{-4\pi t\frac{\frac{(m+ \frac{\rho _{1}-1} {2} )^{2}} {R_{5}^{2}} + \frac{\rho _{2}^{2}} {4R_{6}^{2}} } {\mu ^{2}} }e^{-\pi \chi t/4} \\ & =& \int _{\xi \nu _{1}}^{\infty }\frac{dt} {t} e^{-\pi t\frac{(\rho _{1}-1)^{2}} {4} }e^{-\pi \frac{\delta _{1}} {4\nu _{1}} t} \\ & & +\sum _{m\in Z}^{^{{\prime}} }\int _{4\xi \nu _{1}}^{\infty }\frac{dt} {t} e^{-\pi t(m+\frac{\rho _{1}-1} {2} )^{2} }e^{-\pi \frac{\delta _{1}} {4\nu _{1}} t} \\ & =& \varGamma \left [0,\pi \xi (\nu _{1}(\rho _{1} - 1)^{2} +\delta _{ 1})\right ] + \mathcal{R}_{1}\left [4\xi \nu _{1}, \frac{\rho _{1} - 1} {2}, \frac{\delta _{1}} {4\nu _{1}}\right ] \\ & & {}\end{array}$$
    (18.50)

    In order to write the result of the integral in terms of the original \(\mathcal{R}_{1}\), we separate the zeroth term from the rest in the summation. It is also useful to note that the function \(\mathcal{R}_{1}\) is even in ρ and hence:

    $$\displaystyle{ \mathcal{R}_{1}\left [\xi,\rho,\delta \right ] = \mathcal{R}_{1}\left [\xi,-\rho,\delta \right ] }$$
    (18.51)

Appendix 2: Useful Limits of Relevant Functions

The result of the Kaluza-Klein integrals were evaluated in the previous section, in terms of the two functions, Γ[0, π ξ χ] and \(\mathcal{R}_{1}\left [\xi,\rho,\delta \right ]\). χ and ξ are the regulators and in the limit that they are zero, we can replace them with the relevant mass scales.

$$\displaystyle{ Q^{2} \equiv \pi e^{\gamma }\chi \mu ^{2}\Big\vert _{\chi \rightarrow 0}\qquad \varLambda ^{2} \equiv \frac{\mu ^{2}} {\xi } \Big\vert _{\xi \rightarrow 0} }$$
(18.52)

As evaluated in the previous section:

$$\displaystyle\begin{array}{rcl} \mathcal{R}_{1}\left [\xi,\rho,\delta \right ]& =& -\varGamma \left [0,\pi \xi (\delta +\rho ^{2})\right ] + \frac{2e^{-\pi \delta \xi }} {\sqrt{\xi }} + 2\pi \sqrt{\delta }\text{Erf}\left [\sqrt{\pi \delta \xi }\right ] {}\\ & & -\text{log}\vert 2\ \text{sin}\pi (\rho +i\sqrt{\delta })\vert ^{2} {}\\ \end{array}$$

We use the following expansions:

$$\displaystyle\begin{array}{rcl} -\varGamma \left [0,z\right ]& =& \gamma +\text{ln}\ z +\sum _{k\geq 1}\frac{(-z)^{k}} {k!\ k} \qquad z > 0{}\end{array}$$
(18.53)
$$\displaystyle\begin{array}{rcl} \text{Erf}\left [x\right ]& =& \frac{2x} {\sqrt{\pi }} -\frac{2x^{3}} {3\sqrt{\pi }} + \mathcal{O}(x^{5})\qquad x \ll 1{}\end{array}$$
(18.54)

Then,

$$\displaystyle\begin{array}{rcl} \varGamma \left [0,\pi \xi \chi \right ]& =& -\gamma -\text{ln}\ \pi \xi \chi \\ & =& -\text{ln}\ \pi \frac{e^{\gamma }\mu ^{2}Q^{2}} {\varLambda ^{2}\pi e^{\gamma }\mu ^{2}} \\ & =& -\text{ln}\ \frac{Q^{2}} {\varLambda ^{2}}{}\end{array}$$
(18.55)

With these approximations, \(\mathcal{R}_{1}\left [\xi,\rho,\delta \right ]\) simplifies to:

$$\displaystyle\begin{array}{rcl} \mathcal{R}_{1}\left [\xi,\rho,\delta \right ]& =& -\text{ln}\left [4\pi e^{-\gamma }\frac{1} {\xi } e^{-2/\sqrt{\xi }}\right ] -\text{ln}\left \vert \frac{\text{sin}(\rho +i\sqrt{\delta })} {\pi (\rho +i\sqrt{\delta })} \right \vert ^{2}{}\end{array}$$
(18.56)

We summarize, the various terms that come up in the calculation of threshold corrections in Sect. 18.5. In the expressions below, we have also introduced the compactifications scales \(M_{5} = \sqrt{\pi e^{\gamma }}/R_{5}\) and \(M_{6} = \sqrt{\pi e^{\gamma }}/R_{6}\).

$$\displaystyle\begin{array}{rcl} \varGamma \left [0,\pi \xi \chi \right ]& =& \text{ln} \frac{\varLambda ^{2}} {Q^{2}} \\ \varGamma \left [0,\pi \xi \nu _{1}\right ]& =& -\gamma -\text{ln} \frac{\pi } {\varLambda ^{2}R_{5}^{2}} \\ & =& -\text{ln}\left [\frac{M_{5}^{2}} {\varLambda ^{2}} \right ] \\ \varGamma \left [0,\pi \xi \nu _{2}\right ]& =& -\gamma -\text{ln} \frac{\pi } {\varLambda ^{2}R_{6}^{2}} \\ & =& -\text{ln}\left [\frac{M_{6}^{2}} {\varLambda ^{2}} \right ] \\ \mathcal{R}_{1}\left [4\xi \nu _{1},0, \frac{\chi } {4\nu _{1}}\right ]& =& -\text{ln}\left [\pi e^{-\gamma -\varLambda R_{5} }(\varLambda R_{5})^{2}\right ] \\ \mathcal{R}_{1}\left [4\xi \nu _{1}, \frac{1} {2}, \frac{\chi } {4\nu _{1}}\right ]& =& -\text{ln}\left [\pi e^{-\gamma -\varLambda R_{5} }(\varLambda R_{5})^{2}\right ] -\text{ln}\left [\frac{2} {\pi } \right ]^{2} \\ \mathcal{R}_{1}\left [4\xi \nu _{2},0, \frac{\chi } {4\nu _{2}}\right ]& =& -\text{ln}\left [\pi e^{-\gamma -\varLambda R_{6} }(\varLambda R_{6})^{2}\right ] \\ \mathcal{R}_{1}\left [4\xi \nu _{2}, \frac{1} {2}, \frac{\chi } {4\nu _{2}}\right ]& =& -\text{ln}\left [\pi e^{-\gamma -\varLambda R_{6} }(\varLambda R_{6})^{2}\right ] -\text{ln}\left [\frac{2} {\pi } \right ]^{2} \\ \varGamma \left [0,\pi \xi \left (\frac{\nu _{1}} {4} + \frac{\nu _{2}} {4}\right )\right ]& =& -\text{ln}\left [\frac{M_{5}^{2} + M_{6}^{2}} {4\varLambda ^{2}} \right ] {}\end{array}$$
(18.57)

Appendix 3: 6D → 4D Matching

We calculated the corrections to the gauge couplings coming from the KK states of the 6D orbifold model that was constructed. At the lowest compactification scale (largest compactification radius), we said that the couplings from 4D MSSM and 6D orbifold model should match. In this section, we will compare the two sets of equations, from the two theories:

$$\displaystyle\begin{array}{rcl} \alpha _{i}^{-1}(Q)& =& \alpha ^{-1}(\varLambda ) +\sum _{\rho }\varOmega _{ i,\rho }(Q) {}\\ \alpha _{i}^{-1}(Q)& =& \alpha _{ GUT}^{-1} + \frac{b_{i}} {2\pi } log\frac{M_{GUT}} {Q} -\alpha _{GUT}^{-1} \frac{\epsilon _{3}} {(1 +\epsilon _{3})}\delta _{i3} {}\\ \end{array}$$

and solve for the three scales of the orbifold model, Λ, M 5, and M 6 as well as coupling constant, α at the cut-off scale.

Since the two expressions have to match at all scales below the smallest compactification scale of the orbifold model, we can rewrite the above two equations as:

$$\displaystyle\begin{array}{rcl} & & \alpha _{GUT}^{-1} + \frac{b_{i}} {4\pi } \text{ln}\frac{M_{GUT}^{2}} {Q^{2}} -\alpha _{GUT}^{-1} \frac{\epsilon _{3}} {(1 +\epsilon _{3})}\delta _{i3} \\ & & \quad =\alpha ^{-1}(\varLambda ) + \frac{b_{i}^{++}(I_{\rho } = 0)} {4\pi } \text{ln} \frac{\varLambda ^{2}} {Q^{2}} + \left (\frac{b_{i}^{+-}(I_{\rho } = 0) + b_{i}^{-+}(I_{\rho } = 0)} {4\pi } \right )\text{ln}\left [ \frac{\pi \varLambda } {2M_{5}}\right ]^{2} \\ & & \qquad + \left (\frac{b_{i}^{+-}(I_{\rho } = 0) + b_{i}^{--}(I_{\rho } = 0)} {4\pi } \right )\text{ln}\left [ \frac{\pi \varLambda } {2M_{6}}\right ]^{2} + \frac{b_{i}^{+-}(I_{\rho } = 2)} {4\pi } \text{ln}\left [ \frac{4\varLambda ^{2}} {M_{5}^{2} + M_{6}^{2}}\right ]{}\end{array}$$
(18.58)

where we have used the complete expression we estimated for the corrections to couplings in (18.38).

We use the following redefinitions:

$$\displaystyle\begin{array}{rcl} \frac{b_{i}^{MSSM}} {4\pi } = \frac{b_{i}^{++}(I_{\rho } = 0)} {4\pi } & =& \beta _{i} \\ \frac{b_{i}^{+-}(I_{\rho } = 0) + b_{i}^{-+}(I_{\rho } = 0)} {4\pi } & =& -A_{i} \\ \frac{b_{i}^{+-}(I_{\rho } = 0) + b_{i}^{--}(I_{\rho } = 0)} {4\pi } & =& -B_{i} \\ \frac{b_{i}^{+-}(I_{\rho } = 2)} {4\pi } & =& -C_{i}{}\end{array}$$
(18.59)

and

$$\displaystyle{ (A_{i} + B_{i})\text{ln}\left [ \frac{\pi } {2}\right ]^{2} + C_{ i}\text{ln}\left [4\right ] = D_{i} }$$
(18.60)

and hence end up with a set of three equations that can be simply written as:

$$\displaystyle\begin{array}{rcl} & & \alpha _{GUT}^{-1} -\alpha ^{-1}(\varLambda ) -\alpha _{ GUT}^{-1} \frac{\epsilon _{3}} {(1 +\epsilon _{3})}\delta _{i3} -\beta _{i}\text{ln} \frac{\varLambda ^{2}} {M_{GUT}^{2}} \\ & & \quad + A_{i}\text{ln} \frac{\varLambda ^{2}} {M_{5}^{2}} + B_{i}\text{ln} \frac{\varLambda ^{2}} {M_{6}^{2}} + C_{i}\text{ln} \frac{\varLambda ^{2}} {M_{5}^{2} + M_{6}^{2}} + D_{i} = 0{}\end{array}$$
(18.61)

where, A i  = A 1i + A 2i and i = 1, 2, 3. We look at the equations corresponding (i) (i = 1) - (i =2) (ii) i = 2 (iii) i = 3 and solve for Λ, M 5, and M 6. It is usually considered that the 4D unification scale is around 3. 0 × 1016 GeV and the couplings at this scale are unified at α GUT −1 = 24. In standard scenarios of MSSM with gaugino mass unification, ε 3 = −3%. Depending of the spectrum of low energy SUSY, these quantities are subject to change. The first equation we get by simplifying Eq. (18.61) for (i = 1) - (i =2) is:

$$\displaystyle\begin{array}{rcl} & & -(\beta _{1} -\beta _{2})\text{ln} \frac{\varLambda ^{2}} {M_{GUT}^{2}} + (A_{1} - A_{2})\text{ln} \frac{\varLambda ^{2}} {M_{5}^{2}} + (B_{1} - B_{2})\text{ln} \frac{\varLambda ^{2}} {M_{6}^{2}} \\ & & \quad + (C_{1} - C_{2})\text{ln} \frac{\varLambda ^{2}} {M_{5}^{2} + M_{6}^{2}} + (D_{1} - D_{2}) = 0 {}\end{array}$$
(18.62)

Defining, \(\frac{\varLambda ^{2}} {M_{5}^{2}} = X\) and \(\frac{\varLambda ^{2}} {M_{6}^{2}} = Y\), we get:

$$\displaystyle\begin{array}{rcl} \text{ln} \frac{\varLambda ^{2}} {M_{GUT}^{2}}& =& \left (\frac{A_{1} - A_{2}} {\beta _{1} -\beta _{2}} \right )\text{ln}X + \left (\frac{B_{1} - B_{2}} {\beta _{1} -\beta _{2}} \right )\text{ln}Y \\ & & -\left (\frac{C_{1} - C_{2}} {\beta _{1} -\beta _{2}} \right )\text{ln}\left ( \frac{1} {X} + \frac{1} {Y }\right ) + \left (\frac{D_{1} - D_{2}} {\beta _{1} -\beta _{2}} \right ){}\end{array}$$
(18.63)

Next, we look at Eq. (18.61) when i = 2:

$$\displaystyle\begin{array}{rcl} & & \alpha _{GUT}^{-1} -\alpha ^{-1}(\varLambda ) -\beta _{ 2}\text{ln} \frac{\varLambda ^{2}} {M_{GUT}^{2}} \\ & & \quad + A_{2}\text{ln}X + B_{2}\text{ln}Y - C_{2}\text{ln}\left ( \frac{1} {X} + \frac{1} {Y }\right ) + D_{2} = 0{}\end{array}$$
(18.64)

Then, using the expression we just derived in Eq. (18.63), we get an expression for α −1(Λ):

$$\displaystyle\begin{array}{rcl} \alpha ^{-1}(\varLambda )& =& \alpha _{ GUT}^{-1} + \left [A_{ 2} -\beta _{2}\left (\frac{A_{1} - A_{2}} {\beta _{1} -\beta _{2}} \right )\right ]\text{ln}X + \left [B_{2} -\beta _{2}\left (\frac{B_{1} - B_{2}} {\beta _{1} -\beta _{2}} \right )\right ]\text{ln}Y \\ & & -\left [C_{2} -\beta _{2}\left (\frac{C_{1} - C_{2}} {\beta _{1} -\beta _{2}} \right )\right ]\text{ln}\left ( \frac{1} {X} + \frac{1} {Y }\right ) + \left [D_{2} -\beta _{2}\left (\frac{D_{1} - D_{2}} {\beta _{1} -\beta _{2}} \right )\right ]{}\end{array}$$
(18.65)

Finally, we look at Eq. (18.61) when i = 3, and simplify it using the relations obtained in Eqs. (18.63) and (18.65) and we get a final expression:

$$\displaystyle\begin{array}{rcl} & & \left [A_{3} - A_{2} + \left (\frac{A_{1} - A_{2}} {\beta _{1} -\beta _{2}} \right )(\beta _{2} -\beta _{3})\right ]\text{ln}X + \left [B_{3} - B_{2} + \left (\frac{B_{1} - B_{2}} {\beta _{1} -\beta _{2}} \right )(\beta _{2} -\beta _{3})\right ]\text{ln}Y \\ & & \quad -\left [C_{3} - C_{2} + \left (\frac{C_{1} - C_{2}} {\beta _{1} -\beta _{2}} \right )(\beta _{2} -\beta _{3})\right ]\text{ln}\left ( \frac{1} {X} + \frac{1} {Y }\right ) \\ & & \quad + \left [D_{3} - D_{2} + \left (\frac{D_{1} - D_{2}} {\beta _{1} -\beta _{2}} \right )(\beta _{2} -\beta _{3})\right ] -\alpha _{GUT}^{-1} \frac{\epsilon _{3}} {1 +\epsilon _{3}} = 0 {}\end{array}$$
(18.66)

The above three equations can be rewritten in a simple manner as (in the order Eqs. (18.66), (18.63), (18.65)):

$$\displaystyle\begin{array}{rcl} \mathcal{A}\text{ln}X + \mathcal{B}\text{ln}Y -\mathcal{C}\text{ln}\left ( \frac{1} {X} + \frac{1} {Y }\right ) + \mathcal{D}& =& 0 \\ \mathcal{F}\text{ln}X + \mathcal{G}\text{ln}Y -\mathcal{H}\text{ln}\left ( \frac{1} {X} + \frac{1} {Y }\right ) + \mathcal{I}& =& \text{ln} \frac{\varLambda ^{2}} {M_{GUT}^{2}} \\ \mathcal{K}\text{ln}X + \mathcal{L}\text{ln}Y -\mathcal{M}\text{ln}\left ( \frac{1} {X} + \frac{1} {Y }\right ) + \mathcal{N}& =& \alpha ^{-1}(\varLambda ) {}\end{array}$$
(18.67)

with,

$$\displaystyle\begin{array}{rcl} \mathcal{A}& =& A_{3} - A_{2} + (A_{1} - A_{2})\left (\frac{\beta _{2} -\beta _{3}} {\beta _{1} -\beta _{2}}\right ), {}\\ \mathcal{B}& =& B_{3} - B_{2} + (B_{1} - B_{2})\left (\frac{\beta _{2} -\beta _{3}} {\beta _{1} -\beta _{2}}\right ), {}\\ \mathcal{C}& =& C_{3} - C_{2} + (C_{1} - C_{2})\left (\frac{\beta _{2} -\beta _{3}} {\beta _{1} -\beta _{2}}\right ), {}\\ \mathcal{D}& =& D_{3} - D_{2} + (D_{1} - D_{2})\left (\frac{\beta _{2} -\beta _{3}} {\beta _{1} -\beta _{2}}\right ) -\alpha _{GUT}^{-1} \frac{\epsilon _{3}} {(1 +\epsilon _{3})} {}\\ \mathcal{F}& =& \frac{A_{1} - A_{2}} {\beta _{1} -\beta _{2}}, {}\\ \mathcal{G}& =& \frac{B_{1} - B_{2}} {\beta _{1} -\beta _{2}}, {}\\ \mathcal{H}& =& \frac{C_{1} - C_{2}} {\beta _{1} -\beta _{2}}, {}\\ \mathcal{I}& =& \frac{D_{1} - D_{2}} {\beta _{1} -\beta _{2}}, {}\\ \mathcal{K}& =& A_{2} -\beta _{2}\left (\frac{A_{1} - A_{2}} {\beta _{1} -\beta _{2}} \right ), {}\\ \mathcal{L}& =& B_{2} -\beta _{2}\left (\frac{B_{1} - B_{2}} {\beta _{1} -\beta _{2}} \right ), {}\\ \mathcal{M}& =& C_{2} -\beta _{2}\left (\frac{C_{1} - C_{2}} {\beta _{1} -\beta _{2}} \right ), {}\\ \mathcal{N}& =& D_{2} -\beta _{2}\left (\frac{D_{1} - D_{2}} {\beta _{1} -\beta _{2}} \right ) +\alpha _{ GUT}^{-1}, {}\\ \end{array}$$

These quantities can be calculated using the beta-function coefficients given in Table 18.3. The numerical values of all the above coefficients are summarized in Table 18.5.

With these coefficients, we get a simple quadratic equation in terms in of the variables X and Y:

$$\displaystyle{ \left ( \frac{Y } {X}\right )^{2} + \frac{Y } {X} -\text{Exp}\ \left (-\frac{7\pi \mathcal{D}(\epsilon _{3})} {3} \right ) = 0 }$$
(18.68)

Recall that \(X = \frac{\varLambda ^{2}} {M_{5}^{2}}\) and \(Y = \frac{\varLambda ^{2}} {M_{6}^{2}}\), which implies that the above equation turns into a quadratic equation in \(\left (\frac{M_{5}} {M_{6}} \right )^{2}\) with the solution.

$$\displaystyle{ M_{5}^{2} = \frac{-1 \pm \sqrt{1 + 4\text{Exp} \ \left (-\frac{7\pi \mathcal{D}(\epsilon _{3 } )} {3} \right )}} {2} M_{6}^{2} }$$
(18.69)

which we write as \(M_{5} = \sqrt{m(\epsilon _{3 } )}M_{6}\). The slope m, is the positive solution from the above expression and is shown in Fig. 18.3. The other two equations then yield us M 5 and M 6 uniquely and one expression relating α −1(Λ) and Λ.

$$\displaystyle\begin{array}{rcl} M_{5}& =& \left (m(\epsilon _{3})^{(\mathcal{G}-\mathcal{H})/2}(m(\epsilon _{ 3}) + 1)^{\mathcal{H}/2}e^{\mathcal{I}/2}\right )M_{ GUT} \\ M_{6}& =& \left (m(\epsilon _{3})^{(\mathcal{G}-\mathcal{H}-1)/2}(m(\epsilon _{ 3}) + 1)^{\mathcal{H}/2}e^{\mathcal{I}/2}\right )M_{ GUT} \\ \alpha ^{-1}(\varLambda )& =& -\frac{3} {\pi } \text{ln} \frac{\varLambda ^{2}} {M_{GUT}^{2}} + \frac{3} {\pi } \text{ln}\left (m(\epsilon _{3})^{(\mathcal{G}-\mathcal{H})}(m(\epsilon _{ 3}) + 1)^{\mathcal{H}}e^{\mathcal{I}}\right ) \\ & & +\text{ln}\left (m(\epsilon _{3})^{(\mathcal{L}-\mathcal{M})}(m(\epsilon _{ 3}) + 1)^{\mathcal{M}}e^{\mathcal{N}}\right ) {}\end{array}$$
(18.70)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raby, S. (2017). SUSY GUTs in 6D: Precise Gauge Coupling Unification. In: Supersymmetric Grand Unified Theories. Lecture Notes in Physics, vol 939. Springer, Cham. https://doi.org/10.1007/978-3-319-55255-2_18

Download citation

Publish with us

Policies and ethics