Skip to main content

SO(10) SUSY GUT in 5D

  • Chapter
  • First Online:
Supersymmetric Grand Unified Theories

Part of the book series: Lecture Notes in Physics ((LNP,volume 939))

  • 1768 Accesses

Abstract

We consider a five dimensional supersymmetric SO(10) GUT compactified on an S 1∕(Z 2 × Z 2 ) orbifold where \(S^{1} \equiv \mathbb{R}^{1}/\mathcal{T}\) and \(\mathcal{T}\) is the action of translations by 4π R (see Sect. 14.2). The first orbifold, Z 2, under which y → −y, breaks 5D N = 1 supersymmetry (4D N = 2) to 4D N = 1. The other orbifold, Z 2 , under which y → −y +π R, breaks SO(10) down to the PS gauge group SU(4) C × SU(2) L × SU(2) R . The fundamental domain of the y direction is the line segment y ∈ [0, π R]. SO(10) gauge symmetry is present everywhere except at the point y = π R, which only has Pati-Salam gauge symmetry. Hence, we call the two inequivalent fixed points the “SO(10)” (y = 0) and “Pati-Salam” branes (y = π R) where each fixed point is a three-brane (3+1 dimensional spacetime). The Higgs mechanism on the PS brane completes the breaking of the PS gauge symmetry to the SM gauge group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When considering differential running of the gauge couplings, a Higgs hypermultiplet in the bulk is effectively the same as a 4D 10 of SO(10) with light Higgs MSSM doublets and heavy Higgs triplets of mass M c . This setup admits gauge coupling unification as shown by Kim and Raby [317]. In particular, see the calculations leading to Eq. (3.13) of that paper. Effects from brane Higgs doublets would be felt up to M and would tend to inhibit unification since they drive the couplings apart rather than together.

  2. 2.

    With dimension six operators for the third family, mixing between this family and the first two can induce proton decay. Assuming that the mixing is of order | V ub  | or | V cb  | and that the gauge bosons have mass at M c , naive calculations using formulae in [103] put the proton lifetime many orders of magnitude above current limits, since this leads to an effective gauge boson mass of order M c ∕(V cb V ub ) ≈ 6 × 1017 GeV.

  3. 3.

    The SO(10) breaking mass term, M χ , can be due to an additional \(16,\overline{16}\) which obtain VEVs in the right-handed neutrino direction and couple, for example, as follows, \(\overline{\widetilde{16}}_{a}\langle 16\ \overline{16}\rangle 16_{a}^{{\prime}}\).

  4. 4.

    Such terms given by the substitution Φ L  → Φ R 2 or Φ R  → Φ L 2 would lead to a Yukawa matrix structure different from the one desired and so should be forbidden by some symmetry.

  5. 5.

    We have chosen to use the notation found in [146] to ease comparison between prior works and our own.

References

  1. Blazek, T., Carena, M., Raby, S., Wagner, C.E.M.: Phys. Rev. D 56, 6919 (1997). doi:10.1103/ PhysRevD.56.6919

    Article  ADS  Google Scholar 

  2. Murayama, H., Pierce, A.: Phys. Rev. D 65, 055009 (2002). doi:10.1103/PhysRevD.65.055009

    Article  ADS  Google Scholar 

  3. Kim, H.D., Raby, S., Schradin, L.: Phys. Rev. D 69, 092002 (2004). doi:10.1103/PhysRevD.69.092002

    Article  ADS  Google Scholar 

  4. Barbieri, R., Hall, L.J., Raby, S., Romanino, A.: Nucl. Phys. B 493, 3 (1997). doi:10.1016/ S0550-3213(97)00134-X

    Article  ADS  Google Scholar 

  5. Blazek, T., Raby, S., Tobe, K.: Phys. Rev. D 60, 113001 (1999). doi:10.1103/PhysRevD.60. 113001

    Article  ADS  Google Scholar 

  6. Dermisek, R., Raby, S.: Phys. Lett. B 622, 327 (2005). doi:10.1016/j.physletb.2005.07.018

    Article  ADS  Google Scholar 

  7. Dermisek, R., Raby, S.: Phys. Rev. D 62, 015007 (2000). doi:10.1103/PhysRevD.62.015007

    Article  ADS  Google Scholar 

  8. Dermisek, R., Mafi, A.: Phys. Rev. D 65, 055002 (2002). doi:10.1103/PhysRevD.65.055002

    Article  ADS  Google Scholar 

  9. Kim, H.D., Raby, S.: J. High Energy Phys. 01, 056 (2003). doi:10.1088/1126-6708/2003/01 /056

    Article  ADS  Google Scholar 

  10. Kim, H.D., Raby, S., Schradin, L.: J. High Energy Phys. 05, 036 (2005). doi:10.1088/1126- 6708/2005/05/036

    Article  ADS  Google Scholar 

  11. Barbieri, R., Hall, L.J., Romanino, A.: Phys. Lett. B 401, 47 (1997). doi:10.1016/S0370- 2693(97)00372-9

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raby, S. (2017). SO(10) SUSY GUT in 5D. In: Supersymmetric Grand Unified Theories. Lecture Notes in Physics, vol 939. Springer, Cham. https://doi.org/10.1007/978-3-319-55255-2_15

Download citation

Publish with us

Policies and ethics