Skip to main content

Orbifold GUTs

  • Chapter
  • First Online:
Supersymmetric Grand Unified Theories

Part of the book series: Lecture Notes in Physics ((LNP,volume 939))

  • 1771 Accesses

Abstract

Let us briefly review the geometric picture of GUT models compactified on a circle S1. The circle \(S^{1} \equiv \mathbb{R}^{1}/\mathcal{T}\) where \(\mathcal{T}\) is the action of translations by 2π R. All fields Φ are thus periodic functions of the fifth dimension x 5 = y with \(\varPhi (x_{\mu },y) \rightarrow \varPhi (x_{\mu },y + 2\pi R) =\varPhi (x_{\mu },y)\) (see Fig. 14.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [291] we constructed ’t Hooft–Polyakov monopole strings in the 5D orbifold GUT theory.

  2. 2.

    Recall, for a background field gauge with A M  = A M cl + a M where A M cl is the background value of the gauge field and a M are the small fluctuations, the background covariant derivative is given by D M cl ≡  M + i[A M cl,   ]. If we use the covariant gauge fixing condition D M cl a M  ≡ 0, then the gauge field equations of motion are given by D M cl D M cl a N + 3iF NM cl a M = 0. Note, for a constant background gauge field F NM cl ≡ 0.

  3. 3.

    See problem 10.

  4. 4.

    Where it is assumed that [P, T] = 0.

  5. 5.

    Note, \(A_{5}^{3}(-y) = -A_{5}^{3}(y) + \frac{1} {R}\).

  6. 6.

    The 5D \(\gamma _{5} = i\left (\begin{array}{cc} - \mathbb{I}_{2\times 2} & 0 \\ 0 & \mathbb{I}_{2\times 2} \end{array} \right )\).

  7. 7.

    See problem 11.

  8. 8.

    For other orbifold GUT models in 5D, see [298, 303, 305, 315318] or 6D, see [319, 320].

  9. 9.

    See problem 12.

References

  1. Alciati, M.L., Feruglio, F., Lin, Y., Varagnolo, A.: J. High Energy Phys. 03, 054 (2005). doi:10.1088/1126-6708/2005/03/054

    Article  ADS  Google Scholar 

  2. Dermisek, R., Raby, S., Nandi, S.: Nucl. Phys. B 641, 327 (2002). doi:10.1016/S0550-3213 (02)00611-9

    Article  ADS  Google Scholar 

  3. Georgi, H., Glashow, S.L.: Phys. Rev. Lett. 28, 1494 (1972). doi:10.1103/PhysRevLett.28. 1494

    Article  ADS  Google Scholar 

  4. Hosotani, Y.: Phys. Lett. B 126, 309 (1983). doi:10.1016/0370-2693(83)90170-3

    Article  ADS  Google Scholar 

  5. Kawamura, Y.: Prog. Theor. Phys. 105, 999 (2001). doi:10.1143/PTP.105.999

    Article  ADS  Google Scholar 

  6. Hall, L.J., Murayama, H., Nomura, Y.: Nucl. Phys. B 645, 85 (2002). doi:10.1016/S0550- 3213(02)00816-7

  7. Dienes, K.R., Dudas, E., Gherghetta, T.: Phys. Lett. B 436, 55 (1998). doi:10.1016/S0370- 2693(98)00977-0

  8. Dienes, K.R., Dudas, E., Gherghetta, T.: Nucl. Phys. B 537, 47 (1999). doi:10.1016/S0550- 3213(98)00669-5

  9. Kawamura, Y.: Prog. Theor. Phys. 103, 613 (2000). doi:10.1143/PTP.103.613

    Article  ADS  Google Scholar 

  10. Dermisek, R., Mafi, A.: Phys. Rev. D 65, 055002 (2002). doi:10.1103/PhysRevD.65.055002

    Article  ADS  Google Scholar 

  11. Hall, L.J., Nomura, Y.: Phys. Lett. B 532, 111 (2002). doi:10.1016/S0370-2693(02)01498-3

    Article  ADS  Google Scholar 

  12. Barbieri, R., Hall, L.J., Nomura, Y.: Nucl. Phys. B 624, 63 (2002). doi:10.1016/S0550-3213 (01)00649-6

    Article  ADS  Google Scholar 

  13. Arkani-Hamed, N., Gregoire, T., Wacker, J.G.: J. High Energy Phys. 03, 055 (2002). doi:10.1088/1126-6708/2002/03/055

    Article  ADS  Google Scholar 

  14. Hall, L.J., Nomura, Y.: Phys. Rev. D 64, 055003 (2001). doi:10.1103/PhysRevD.64.055003

    Article  ADS  Google Scholar 

  15. Hall, L.J., Nomura, Y.: Phys. Rev. D 66, 075004 (2002). doi:10.1103/PhysRevD.66.075004

    Article  ADS  Google Scholar 

  16. Altarelli, G., Feruglio, F.: Phys. Lett. B 511, 257 (2001). doi:10.1016/S0370-2693(01)00 650-5

    Article  ADS  Google Scholar 

  17. Kim, H.D., Raby, S., Schradin, L.: J. High Energy Phys. 05, 036 (2005). doi:10.1088/1126- 6708/2005/05/036

    Article  ADS  Google Scholar 

  18. Asaka, T., Buchmuller, W., Covi, L.: Phys. Lett. B 523, 199 (2001). doi:10.1016/S0370- 2693(01)01324-7

  19. Hall, L.J., Nomura, Y., Okui, T., Tucker-Smith, D.: Phys. Rev. D 65, 035008 (2002). doi:10.1103/ PhysRevD.65.035008

    Article  ADS  Google Scholar 

  20. Contino, R., Pilo, L., Rattazzi, R., Trincherini, E.: Nucl. Phys. B 622, 227 (2002). doi:10.1016/ S0550-3213(01)00602-2

    Article  ADS  Google Scholar 

  21. Ghilencea, D.M., Groot Nibbelink, S.: Nucl. Phys. B 641, 35 (2002). doi:10.1016/S0550- 3213(02)00625-9

  22. Alciati, M.L., Feruglio, F., Lin, Y., Varagnolo, A.: J. High Energy Phys. 11, 039 (2006). doi:10.1088/1126-6708/2006/11/039

    Article  ADS  Google Scholar 

  23. Mütter, A., Ratz, M., Vaudrevange, P.K.S.: (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raby, S. (2017). Orbifold GUTs. In: Supersymmetric Grand Unified Theories. Lecture Notes in Physics, vol 939. Springer, Cham. https://doi.org/10.1007/978-3-319-55255-2_14

Download citation

Publish with us

Policies and ethics