Skip to main content

Baryogenesis, Cosmological Moduli and Gravitino Problems, and Dark Matter

  • Chapter
  • First Online:
Supersymmetric Grand Unified Theories

Part of the book series: Lecture Notes in Physics ((LNP,volume 939))

  • 1779 Accesses

Abstract

SUSY GUTs provide a framework for describing cosmology. In particular, the LSP is a natural candidate for dark matter. In addition, since baryon and lepton number are violated, the theory allows for an understanding of why there is more matter than anti-matter in the universe. The particular scenario discussed in this chapter is known as baryogenesis via leptogenesis. SUSY GUTs also introduce some possible problems for cosmology. We discuss the so-called cosmological moduli problem and the gravitino problem. Note, we have no insight on the most serious problem of cosmology, i.e. the cosmological constant problem. Perhaps the solution to this problem is an accident of our location in a multi-verse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A possible model of inflation with the gauge symmetry breaking scale determining the energy density during inflation is given in [249, 250].

  2. 2.

    The gravitino is described by a Rarita-Schwinger spin 3/2 field, \(\tilde{G}_{\mu }\).

  3. 3.

    This is given simply by dimensional analysis.

  4. 4.

    This is not quite true since every time some particles annihilate out of the thermal bath, photons get heated up while the gravitinos don’t.

  5. 5.

    This result neglects the right-handed neutrinos needed for the See-Saw mechanism. But assuming they are heavy, they can safely be ignored.

  6. 6.

    See problem 9.

  7. 7.

    In particular Heterotic string models with a discrete \(\mathbb{Z}_{4}^{R}\) symmetry it has been argued that most of the moduli may be stabilized in supersymmetric vacua with string scale masses [276].

References

  1. Anandakrishnan, A., Sinha, K.: On the viability of thermal well-tempered dark matter in SUSY GUTs. Report Number OHSTPY-HEP-T-13-005 (2013). arXiv:1310.7579

    Google Scholar 

  2. Weinberg, S.: Phys. Rev. Lett. 48, 1303 (1982). doi:10.1103/PhysRevLett.48.1303

    Article  ADS  Google Scholar 

  3. Coughlan, G., Fischler, W., Kolb, E.W., Raby, S., Ross, G.G.: Phys. Lett. B 131, 59 (1983). doi:10.1016/0370-2693(83)91091-2

    Article  ADS  Google Scholar 

  4. Banks, T., Kaplan, D.B., Nelson, A.E.: Phys. Rev. D 49, 779 (1994). doi:10.1103/PhysRevD.49.779

    Article  ADS  Google Scholar 

  5. Kolb, E.W., Turner, M.S.: Front. Phys. 69, 1 (1990)

    ADS  Google Scholar 

  6. Baumann, D., McAllister, L.: Inflation and String Theory. Cambridge University Press, Cambridge (2015). http://inspirehep.net/record/1289899/files/arXiv:1404.2601.pdf

    Book  MATH  Google Scholar 

  7. Ade, P.A.R., et al.: Planck 2015 results. XIII. Cosmological parameters. Planck (2015). arXiv:1502.01589

    Google Scholar 

  8. Kolb, E.W., Wolfram, S.: Nucl. Phys. B 172, 224 (1980). doi:10.1016/0550-3213(80)90167-4 [Erratum: Nucl. Phys. B 195, 542 (1982)]

  9. Ade, P., et al.: Phys. Rev. Lett. 114, 101301 (2015). doi:10.1103/PhysRevLett.114.101301

    Article  ADS  Google Scholar 

  10. Buchmuller, W., Ishiwata, K.: Phys. Rev. D 91 (8), 081302 (2015). doi:10.1103/PhysRevD. 91.081302

    Article  ADS  Google Scholar 

  11. Bryant, B.C., Raby, S.: Phys. Rev. D 93 (9), 095003 (2016). doi:10.1103/PhysRevD.93. 095003

    Article  ADS  Google Scholar 

  12. ’t Hooft, G.: Nucl. Phys. B 79, 276 (1974). doi:10.1016/0550-3213(74)90486-6

  13. Weinberg, S.: Gravitation and Cosmology. Wiley, New York (1972). http://www.spires.fnal.gov/spires/find/books/www?cl=QC6.W431

    Google Scholar 

  14. Sakharov, A.D.: Pisma Zh. Eksp. Teor. Fiz. 5, 32 (1967). doi:10.1070/PU1991v034n05AB EH002497 [Usp. Fiz. Nauk 161, 61(1991)]

  15. ’t Hooft, G.: Phys. Rev. Lett. 37, 8 (1976). doi:10.1103/PhysRevLett.37.8

  16. ’t Hooft, G.: Phys. Rev. D 14, 3432 (1976). doi:10.1103/PhysRevD.18.2199.3, 10.1103/PhysRevD.14.3432 [Erratum: Phys. Rev. D 18, 2199 (1978)]

  17. Kuzmin, V.A., Rubakov, V.A., Shaposhnikov, M.E.: Phys. Lett. B 155, 36 (1985). doi:10.1016/ 0370-2693(85)91028-7

    Article  ADS  Google Scholar 

  18. Fukugita, M., Yanagida, T., Yoshimura, M.: Phys. Lett. B 106, 183 (1981). doi:10.1016/0370- 2693(81)90904-7

  19. Fukugita, M., Yanagida, T.: Phys. Lett. B 174, 45 (1986). doi:10.1016/0370-2693(86)91126-3

    Article  ADS  Google Scholar 

  20. Buchmuller, W., Peccei, R.D., Yanagida, T.: Annu. Rev. Nucl. Part. Sci. 55, 311 (2005). doi:10.1146/annurev.nucl.55.090704.151558

    Article  ADS  Google Scholar 

  21. Ellis, J.R., Kim, J.E., Nanopoulos, D.V.: Phys. Lett. B 145, 181 (1984). doi:10.1016/0370- 2693(84)90334-4

  22. Ellis, J.R., Nanopoulos, D.V., Sarkar, S.: Nucl. Phys. B 259, 175 (1985). doi:10.1016/0550- 3213(85)90306-2

  23. Kawasaki, M., Kohri, K., Moroi, T., Yotsuyanagi, A.: Phys. Rev. D 78, 065011 (2008). doi:10.1103/PhysRevD.78.065011

    Article  ADS  Google Scholar 

  24. Moroi, T.: Effects of the gravitino on the inflationary universe. Ph.D. thesis, Tohoku University (1995)

    Google Scholar 

  25. Kohri, K., Moroi, T., Yotsuyanagi, A.: Phys. Rev. D 73, 123511 (2006). doi:10.1103/PhysRevD.73.123511

    Article  ADS  Google Scholar 

  26. Pagels, H., Primack, J.R.: Phys. Rev. Lett. 48, 223 (1982). doi:10.1103/PhysRevLett.48.223

    Article  ADS  Google Scholar 

  27. Moroi, T., Murayama, H., Yamaguchi, M.: Phys. Lett. B 303, 289 (1993). doi:10.1016/0370- 2693(93)91434-O

    Article  ADS  Google Scholar 

  28. Fayet, P.: Phys. Lett. B 70, 461 (1977). doi:10.1016/0370-2693(77)90414-2

    Article  ADS  Google Scholar 

  29. Fayet, P.: Ettore Majorana Int. Sci. Ser. Phys. Sci. 7, 587 (1980)

    Google Scholar 

  30. Dimopoulos, S., Dine, M., Raby, S., Thomas, S.D.: Phys. Rev. Lett. 76, 3494 (1996). doi:10.1103/PhysRevLett.76.3494

    Article  ADS  Google Scholar 

  31. Dine, M., Randall, L., Thomas, S.D.: Phys. Rev. Lett. 75, 398 (1995). doi:10.1103/PhysRevLett.75.398

    Article  ADS  Google Scholar 

  32. Dine, M., Randall, L., Thomas, S.D.: Nucl. Phys. B 458, 291 (1996). doi:10.1016/0550- 3213(95)00538-2

  33. Kane, G., Sinha, K., Watson, S.: Int. J. Mod. Phys. D 24 (08), 1530022 (2015). doi:10.1142/S0218271815300220

    Article  ADS  Google Scholar 

  34. Barbieri, R., Cecotti, S.: Z. Phys. C 17, 183 (1983). doi:10.1007/BF01574187

    Article  ADS  Google Scholar 

  35. Linde, A., Mambrini, Y., Olive, K.A.: Phys. Rev. D 85, 066005 (2012). doi:10.1103/PhysRevD.85.066005

    Article  ADS  Google Scholar 

  36. Ferrara, S., Kallosh, R., Linde, A.: J. High Energy Phys. 10, 143 (2014). doi:10.1007/JHEP10 (2014)143

    Article  ADS  Google Scholar 

  37. Kappl, R., Petersen, B., Raby, S., Ratz, M., Schieren, R., Vaudrevange, P.K.S.: Nucl. Phys. B 847, 325 (2011). doi:10.1016/j.nuclphysb.2011.01.032

    Article  ADS  Google Scholar 

  38. Dine, M., Fischler, W., Nemeschansky, D.: Solution of the entropy crisis of supersymmetric theories. Report Number: Print-83-0861, IAS, Princeton (1983)

    Google Scholar 

  39. Kofman, L., Linde, A.D., Liu, X., Maloney, A., McAllister, L., Silverstein, E.: J. High Energy Phys. 05, 030 (2004). doi:10.1088/1126-6708/2004/05/030

    Article  ADS  Google Scholar 

  40. Stewart, E.D., Kawasaki, M., Yanagida, T.: Phys. Rev. D 54, 6032 (1996). doi:10.1103/PhysRevD.54.6032

    Article  ADS  Google Scholar 

  41. Allahverdi, R., Dutta, B., Sinha, K.: Phys. Rev. D 82, 035004 (2010). doi:10.1103/PhysRevD.82.035004

    Article  ADS  Google Scholar 

  42. Freese, K.: In: 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories (MG14) Rome, Italy, 12–18 July 2015 (2017). http://inspirehep.net/record/1508128/files/arXiv:1701.01840.pdf

  43. Arkani-Hamed, N., Delgado, A., Giudice, G.F.: Nucl. Phys. B 741, 108 (2006). doi:10.1016/j. nuclphysb.2006.02.010

    Article  ADS  Google Scholar 

  44. Choi, K.Y., Covi, L., Kim, J.E., Roszkowski, L.: J. High Energy Phys. 04, 106 (2012). doi:10.1007/JHEP04(2012)106

    Article  ADS  Google Scholar 

  45. Bae, K.J., Baer, H., Chun, E.J.: J. Cosmol. Astropart. Phys. 1312, 028 (2013). doi:10.1088/ 1475-7516/2013/12/028

    Article  ADS  Google Scholar 

  46. Bae, K.J., Baer, H., Lessa, A., Serce, H.: J. Cosmol. Astropart. Phys. 1410 (10), 082 (2014). doi:10.1088/1475-7516/2014/10/082

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Raby, S. (2017). Baryogenesis, Cosmological Moduli and Gravitino Problems, and Dark Matter. In: Supersymmetric Grand Unified Theories. Lecture Notes in Physics, vol 939. Springer, Cham. https://doi.org/10.1007/978-3-319-55255-2_11

Download citation

Publish with us

Policies and ethics