Skip to main content

Multiple Linear Regression

  • Chapter
  • First Online:
Linear Regression

Abstract

This chapter introduces the multiple linear regression model, the response plot for checking goodness of fit, the residual plot for checking lack of fit, the ANOVA F test, the partial F test, the t tests, and least squares. The problems use software R, SAS, Minitab, and Arc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson-Sprecher, R. (1994). Model comparisons and R 2. The American Statistician, 48, 113–117.

    Google Scholar 

  • Anscombe, F. J. (1961). Examination of residuals. In J. Neyman (Ed.), Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability (pp. 1–31). Berkeley, CA: University of California Press.

    Google Scholar 

  • Anscombe, F. J., & Tukey, J. W. (1963). The examination and analysis of residuals. Technometrics, 5, 141–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The new S language a programming environment for data analysis and graphics. Pacific Grove, CA: Wadsworth and Brooks/Cole.

    MATH  Google Scholar 

  • Brooks, D. G., Carroll, S. S., & Verdini, W. A. (1988). Characterizing the domain of a regression model. The American Statistician, 42, 187–190.

    Google Scholar 

  • Buxton, L. H. D. (1920). The anthropology of Cyprus. The Journal of the Royal Anthropological Institute of Great Britain and Ireland, 50, 183–235.

    Article  Google Scholar 

  • Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. (1983). Graphical methods for data analysis. Boston, MA: Duxbury Press.

    MATH  Google Scholar 

  • Chang, J., & Olive, D. J. (2010). OLS for 1D regression models. Communications in statistics: Theory and methods, 39, 1869–1882.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, A., Bengtsson, T., & Ho, T. K. (2009). A regression paradox for linear models: Sufficient conditions and relation to Simpson’s paradox. The American Statistician, 63, 218–225.

    Article  MathSciNet  Google Scholar 

  • Chihara, L., & Hesterberg, T. (2011). Mathematical statistics with resampling and R. Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Cody, R. P., & Smith, J. K. (2006). Applied statistics and the SAS programming language (5th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.

    MATH  Google Scholar 

  • Cook, R. D. (1998). Regression graphics: Ideas for studying regression through graphics. New York, NY: Wiley.

    Book  MATH  Google Scholar 

  • Cook, R. D., & Weisberg, S. (1997). Graphics for assessing the adequacy of regression models. Journal of the American Statistical Association, 92, 490–499.

    Article  MathSciNet  MATH  Google Scholar 

  • Cook, R. D., & Weisberg, S. (1999a). Applied regression including computing and graphics. New York, NY: Wiley.

    Google Scholar 

  • Cramér, H. (1946). Mathematical Methods of Statistics. Princeton, NJ: Princeton University Press.

    MATH  Google Scholar 

  • Crawley, M. J. (2013). The R book (2nd ed.). Hoboken, NJ: Wiley.

    MATH  Google Scholar 

  • Darlington, R. B. (1969). Deriving least-squares weights without calculus. The American Statistician, 23, 41–42.

    Google Scholar 

  • Datta, B. N. (1995). Numerical linear algebra and applications. Pacific Grove, CA: Brooks/Cole Publishing Company.

    MATH  Google Scholar 

  • Dongarra, J. J., Moler, C. B., Bunch, J. R., & Stewart, G. W. (1979). Linpack’s users guide. Philadelphia, PA: SIAM.

    Book  MATH  Google Scholar 

  • Draper, N. R. (2002). Applied regression analysis bibliography update 2000–2001. Communications in Statistics: Theory and Methods, 31, 2051–2075.

    Article  MathSciNet  MATH  Google Scholar 

  • Freedman, D. A. (1983). A note on screening regression equations. The American Statistician, 37, 152–155.

    MathSciNet  Google Scholar 

  • Ghosh, S. (1987), Note on a common error in regression diagnostics using residual plots. The American Statistician, 41, 338.

    Article  Google Scholar 

  • Gladstone, R. J. (1905). A study of the relations of the brain to the size of the head. Biometrika, 4, 105–123.

    Article  Google Scholar 

  • Golub, G. H., & Van Loan, C. F. (1989). Matrix computations (2nd ed.). Baltimore, MD: John Hopkins University Press.

    MATH  Google Scholar 

  • Guttman, I. (1982). Linear models: An introduction. New York, NY: Wiley.

    MATH  Google Scholar 

  • Harter, H. L. (1974a). The method of least squares and some alternatives. Part I. International Statistical Review, 42, 147–174.

    Google Scholar 

  • Harter, H. L. (1974b). The method of least squares and some alternatives. Part II. International Statistical Review, 42, 235–165.

    Google Scholar 

  • Harter, H. L. (1975a). The method of least squares and some alternatives. Part III. International Statistical Review, 43, 1–44.

    Google Scholar 

  • Harter, H. L. (1975b). The method of least squares and some alternatives. Part IV. International Statistical Review, 43, 125–190, 273–278.

    Google Scholar 

  • Harter, H. L. (1975c). The method of least squares and some alternatives. Part V. International Statistical Review, 43, 269–272.

    Google Scholar 

  • Harter, H. L. (1976). The method of least squares and some alternatives. Part VI. International Statistical Review, 44, 113–159.

    MathSciNet  MATH  Google Scholar 

  • Hebbler, B. (1847). Statistics of Prussia. Journal of the Royal Statistical Society, A, 10, 154–186.

    Google Scholar 

  • Hoaglin, D. C., & Welsh, R. (1978). The hat matrix in regression and ANOVA. The American Statistician, 32, 17–22.

    MATH  Google Scholar 

  • James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning with applications in R. New York, NY: Springer.

    Book  MATH  Google Scholar 

  • Joglekar, G., Schuenemeyer, J. H., & LaRiccia, V. (1989). Lack-of-fit testing when replicates are not available. The American Statistician, 43, 135–143.

    Google Scholar 

  • Johnson, R. W. (1996). Fitting percentage of body fat to simple body measurements. Journal of Statistics Education, 4, online at www.amstat.org/publications/jse/

  • Kachigan, S. K. (1982). Multivariate statistical analysis: A conceptual introduction (1st ed.). New York, NY: Radius Press.

    Google Scholar 

  • Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2005). Applied linear statistical models (5th ed.). Boston, MA: McGraw-Hill/Irwin.

    Google Scholar 

  • KvÃ¥lseth, T. O. (1985). Cautionary note about R 2. The American Statistician, 39, 279–285.

    Google Scholar 

  • Lei, J., Robins, J., & Wasserman, L. (2013). Distribution free prediction sets. Journal of the American Statistical Association, 108, 278–287.

    Article  MathSciNet  MATH  Google Scholar 

  • Lei, J., & Wasserman, L. (2014). Distribution free prediction bands. Journal of the Royal Statistical Society, B, 76, 71–96.

    Article  Google Scholar 

  • Li, K. C., & Duan, N. (1989). Regression analysis under link violation. The Annals of Statistics, 17, 1009–1052.

    Article  MathSciNet  MATH  Google Scholar 

  • Moore, D. S. (2000). The basic practice of statistics (2nd ed.). New York, NY: W.H. Freeman.

    Google Scholar 

  • Norman, G. R., & Streiner, D. L. (1986). PDQ statistics. Philadelphia, PA: B.C. Decker.

    Google Scholar 

  • Olive, D. J. (2007). Prediction intervals for regression. Computational Statistics & Data Analysis, 51, 3115–3122.

    Article  MathSciNet  MATH  Google Scholar 

  • Olive, D. J. (2013a), Asymptotically optimal regression prediction intervals and prediction regions for multivariate data. International Journal of Statistics and Probability, 2, 90–100.

    Google Scholar 

  • Olive, D. J. (2014). Statistical theory and inference. New York, NY: Springer.

    Book  MATH  Google Scholar 

  • Olive, D. J., & Hawkins, D. M. (2005). Variable selection for 1D regression models. Technometrics, 47, 43–50.

    Article  MathSciNet  Google Scholar 

  • Pelawa Watagoda, L. C. R., & Olive, D. J. (2017). Inference after variable selection, preprint at http://lagrange.math.siu.edu/Olive/ppvsinf.pdf

    Google Scholar 

  • Peña, E. A., & Slate, E. H. (2006). Global validation of linear model assumptions. Journal of the American Statistical Association, 101, 341–354.

    Article  MathSciNet  MATH  Google Scholar 

  • Rouncefield, M. (1995). The statistics of poverty and inequality. Journal of Statistics and Education, 3, online www.amstat.org/publications/jse/

  • Sadooghi-Alvandi, S. M. (1990). Simultaneous prediction intervals for regression models with intercept. Communications in Statistics: Theory and Methods, 19, 1433–1441.

    Article  MathSciNet  MATH  Google Scholar 

  • Sall, J. (1990). Leverage plots for general linear hypotheses. The American Statistician, 44, 308–315.

    Google Scholar 

  • Schoemoyer, R. L. (1992). Asymptotically valid prediction intervals for linear models. Technometrics, 34, 399–408.

    Article  MathSciNet  Google Scholar 

  • Searle, S. R. (1988). Parallel lines in residual plots. The American Statistician, 42, 211.

    Google Scholar 

  • Seber, G. A. F., & Lee, A. J. (2003). Linear regression analysis (2nd ed.). New York, NY: Wiley.

    Book  MATH  Google Scholar 

  • Sen, P. K., & Singer, J. M. (1993). Large sample methods in statistics: An introduction with applications. New York, NY: Chapman & Hall.

    Book  MATH  Google Scholar 

  • Su, Z., & Yang, S.-S. (2006). A note on lack-of-fit tests for linear models without replication. Journal of the American Statistical Association, 101, 205–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Tremearne, A. J. N. (1911). Notes on some Nigerian tribal marks. Journal of the Royal Anthropological Institute of Great Britain and Ireland, 41, 162–178.

    Article  Google Scholar 

  • Wilcox, R. R. (2012). Introduction to robust estimation and hypothesis testing (3rd ed.). New York, NY: Academic Press, Elsevier.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Olive, D.J. (2017). Multiple Linear Regression. In: Linear Regression. Springer, Cham. https://doi.org/10.1007/978-3-319-55252-1_2

Download citation

Publish with us

Policies and ethics