Advertisement

Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes

  • Witold Karol SubczynskiEmail author
  • Justyna Widomska
  • Laxman Mainali
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 977)

Abstract

Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

Keywords

Oxygen Model membranes Biological membranes Permeability Cholesterol 

Notes

Acknowledgments

Supported by grants EY015526, EB002052, and EY001931 from the NIH.

References

  1. 1.
    Missner A, Pohl P (2009) 110 years of the meyer–Overton rule: predicting membrane permeability of gases and other small compounds. ChemPhysChem 10:1405–1414CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Diamond JM, Katz Y (1974) Interpretation of nonelectrolyte partition coefficients between dimyristoyl lecithin and water. J Membr Biol 17:121–154CrossRefPubMedGoogle Scholar
  3. 3.
    Dix JA, Kivelson D, Diamond JM (1978) Molecular motion of small nonelectrolyte molecules in lecithin bilayers. J Membr Biol 40:315–342CrossRefPubMedGoogle Scholar
  4. 4.
    Kusumi A, Subczynski WK, Hyde JS (1982) Oxygen transport parameter in membranes as deduced by saturation recovery measurements of spin-lattice relaxation times of spin labels. Proc Natl Acad Sci U S A 79:1854–1858CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Subczynski WK, Hyde JS, Kusumi A (1991) Effect of alkyl chain unsaturation and cholesterol intercalation on oxygen transport in membranes. Biochemistry 30:8578–8590CrossRefPubMedGoogle Scholar
  6. 6.
    Subczynski WK, Hyde JS, Kusumi A (1989) Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc Natl Acad Sci U S A 86:4474–4478CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Pace RJ, Chan SI (1982) Molecular motions in lipid bilayers. III. Lateral and transverse diffusion in bilayers. J Chem Phys 76:4241–4247CrossRefGoogle Scholar
  8. 8.
    Subczynski WK, Wisniewska A (2000) Physical properties of lipid bilayer membranes: relevance to membrane biological functions. Acta Biochim Pol 47:613–625PubMedGoogle Scholar
  9. 9.
    Almeida PF, Vaz WL, Thompson TE (1992) Lateral diffusion in the liquid phases of dimyristoylphosphatidylcholine/cholesterol lipid bilayers: a free volume analysis. Biochemistry 31:6739–6747CrossRefPubMedGoogle Scholar
  10. 10.
    Mainali L, Raguz M, Subczynski WK (2013) Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies. J Phys Chem B 117:8994–9003CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Subczynski WK, Wisniewska A, Hyde JS et al (2007) Three-dimensional dynamic structure of the liquid-ordered domain as examined by a EPR oxygen probing. Biophys J 92:1573–1584CrossRefPubMedGoogle Scholar
  12. 12.
    Raguz M, Mainali L, Widomska J et al (2011) Using spin-label electron paramagnetic resonance (EPR) to discriminate and characterize the cholesterol bilayer domain. Chem Phys Lipids 164:819–829CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mainali L, Raguz M, O'Brien WJ et al (2013) Properties of membranes derived from the total lipids extracted from the human lens cortex and nucleus. Biochim Biophys Acta 1828:1432–1440CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Subczynski WK, Raguz M, Widomska J et al (2012) Functions of cholesterol and the cholesterol bilayer domain specific to the fiber-cell plasma membrane of the eye lens. J Membr Biol 245:51–68CrossRefPubMedGoogle Scholar
  15. 15.
    Mainali L, Raguz M, O’Brien WJ et al (2016) Changes in the properties and organization of human lens lipid membranes occurring with age. Curr Eye Res, DOI:  10.1080/02713683.2016.1231325
  16. 16.
    Altenbach C, Greenhalgh DA, Khorana HG et al (1994) A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A 91:1667–1671CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ashikawa I, Yin J-J, Subczynski WK et al (1994) Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry 33:4947–4952CrossRefPubMedGoogle Scholar
  18. 18.
    Raguz M, Mainali L, O'Brien WJ et al (2015) Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups. Exp Eye Res 132:78–90CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Raguz M, Mainali L, O'Brien WJ et al (2015) Amounts of phospholipids and cholesterol in lipid domains formed in intact lens membranes. Exp Eye Res 140:179–186CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Witold Karol Subczynski
    • 1
    Email author
  • Justyna Widomska
    • 2
  • Laxman Mainali
    • 1
  1. 1.Department of BiophysicsMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of BiophysicsMedical University of LublinLublinPoland

Personalised recommendations