Physiological Effects of Continuous Colored Light Exposure on Mayer Wave Activity in Cerebral Hemodynamics: A Functional Near-Infrared Spectroscopy (fNIRS) Study

  • A. J. Metz
  • S. D. Klein
  • F. Scholkmann
  • U. WolfEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 977)


We are increasingly exposed to colored light, but its impact on human physiology is not yet extensively investigated. In the present study we aimed to determine the effects of colored light on human cerebral Mayer wave activity (MWA). We measured oxy- ([O2Hb]), deoxy- ([HHb]), total hemoglobin ([tHb]) concentrations and tissue oxygen saturation (StO2) by functional near-infrared spectroscopy (fNIRS) in the left and right pre-frontal cortex (L-PFC, R-PFC) of 17 subjects (median age: 29 years, 6 women). In a randomized crossover design subjects were exposed to blue, red, green, and yellow LED light for 10 min. Pre-light (8 min, baseline) and post-light (15 min, recovery) conditions were darkness. MWA was calculated from band-pass filtered fNIRS signals (~0.08–0.12 Hz). The medians from the last 3 min of each period (baseline, light exposure, recovery) were statistically analyzed. MWA was increased during red and green light vs. baseline and after blue light exposure in recovery in the L-PFC. MWA differed depending on the chosen frequency range, filter design, and type of signals to analyze (raw intensity, hemoglobin signal from multi-distance method or modified Beer-Lambert law, or within hemoglobin signals).


Functional near-infrared spectroscopy Brain Mayer wave activity Colored light exposure 


  1. 1.
    Maisels MJ, McDonagh AF (2008) Phototherapy for neonatal jaundice. N Engl J Med 358(9):920–928CrossRefPubMedGoogle Scholar
  2. 2.
    Chellappa SL, Gordijn MC, Cajochen C (2011) Can light make us bright? Effects of light on cognition and sleep. Prog Brain Res 190:119–133CrossRefPubMedGoogle Scholar
  3. 3.
    Jacobs KW, Hustmyer FE Jr (1974) Effects of four psychological primary colors on GSR, heart rate and respiration rate. Percept Mot Skills 38(3):763–766CrossRefPubMedGoogle Scholar
  4. 4.
    Schäfer A, Kratky KW (2006) The effect of colored illumination on heart rate variability. Forsch Komplementmed 13(3):167–173CrossRefPubMedGoogle Scholar
  5. 5.
    Weinzirl J, Wolf M, Nelle M et al (2012) Colored light and brain and muscle oxygenation. Adv Exp Med Biol 737:33–36CrossRefPubMedGoogle Scholar
  6. 6.
    Mayer S (1876) Studien zur Physiologie des Herzens und der Blutgefässe 6. Abhandlung: Über spontane Blutdruckschwankungen. Sitzungsberichte Akademie der Wissenschaften in Wien. Mathematisch-naturwissenschaftliche Classe. Anatomie 74:281–307Google Scholar
  7. 7.
    Julien C (2006) The enigma of Mayer waves: Facts and models. Cardiovasc Res 70(1):12–21CrossRefPubMedGoogle Scholar
  8. 8.
    Fantini S, Franceschini MA, Gratton E (1994) Semi-Infinite-Geometry Boundary-Problem for Light Migration in Highly Scattering Media - a Frequency-Domain Study in the Diffusion-Approximation. J Opt Soc Am B 11(10):2128–2138CrossRefGoogle Scholar
  9. 9.
    Hueber DM, Fantini S, Cerussi AE et al (1999) New optical probe designs for absolute (self-calibrating) NIR tissue hemoglobin measurements. Proc SPIE III 3597:618–631CrossRefGoogle Scholar
  10. 10.
    Wray S, Cope M, Delpy DT et al (1988) Characterization of the near infrared absorption spectra of cytochrome aa3 and haemoglobin for the non-invasive monitoring of cerebral oxygenation. Biochim Biophys Acta 933(1):184–192CrossRefPubMedGoogle Scholar
  11. 11.
    Scholkmann F, Spichtig S, Muehlemann T et al (2010) How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol Meas 31(5):649–662CrossRefPubMedGoogle Scholar
  12. 12.
    Bumstead JR, Bauer AQ, Wright PW et al (2016) Cerebral functional connectivity and Mayer waves in mice: Phenomena and separability. J Cereb Blood Flow Metab 37:471–484. 0271678X16629977CrossRefPubMedGoogle Scholar
  13. 13.
    Nilsson H, Aalkjaer C (2003) Vasomotion: mechanisms and physiological importance. Mol Interv 3(2):79–89. 51CrossRefPubMedGoogle Scholar
  14. 14.
    Pradhan RK, Chakravarthy VS (2011) Informational dynamics of vasomotion in microvascular networks: a review. Acta Physiol 201(2):193–218CrossRefGoogle Scholar
  15. 15.
    Rivadulla C, de Labra C, Grieve KL et al (2011) Vasomotion and neurovascular coupling in the visual thalamus in vivo. PLoS One 6(12):e28746CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Yücel MA, Selb J, Aasted CM et al (2016) Mayer waves reduce the accuracy of estimated hemodynamic response functions in functional near-infrared spectroscopy. Biomed Opt Express 7(8):3078–3088CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tachtsidis I, Scholkmann F (2016) False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics 3(3):030401CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • A. J. Metz
    • 1
  • S. D. Klein
    • 1
  • F. Scholkmann
    • 1
    • 2
  • U. Wolf
    • 1
    Email author
  1. 1.University of Bern, Institute of Complementary MedicineBernSwitzerland
  2. 2.Biomedical Optics Research Laboratory, Department of NeonatologyUniversity of Zurich, University Hospital ZurichZurichSwitzerland

Personalised recommendations