Advertisement

A New Method Based on Graphics Processing Units for Fast Near-Infrared Optical Tomography

  • Jingjing Jiang
  • Linda Ahnen
  • Alexander Kalyanov
  • Scott Lindner
  • Martin Wolf
  • Salvador Sanchez MajosEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 977)

Abstract

The accuracy of images obtained by Diffuse Optical Tomography (DOT) could be substantially increased by the newly developed time resolved (TR) cameras. These devices result in unprecedented data volumes, which present a challenge to conventional image reconstruction techniques. In addition, many clinical applications require taking photons in air regions like the trachea into account, where the diffusion model fails. Image reconstruction techniques based on photon tracking are mandatory in those cases but have not been implemented so far due to computing demands. We aimed at designing an inversion algorithm which could be implemented on commercial graphics processing units (GPUs) by making use of information obtained with other imaging modalities. The method requires a segmented volume and an approximately uniform value for the reduced scattering coefficient in the volume under study. The complex photon path is reduced to a small number of partial path lengths within each segment resulting in drastically reduced memory usage and computation time. Our approach takes advantage of wavelength normalized data which renders it robust against instrumental biases and skin irregularities which is critical for realistic clinical applications. The accuracy of this method has been assessed with both simulated and experimental inhomogeneous phantoms showing good agreement with target values. The simulation study analyzed a phantom containing a tumor next to an air region. For the experimental test, a segmented cuboid phantom was illuminated by a supercontinuum laser and data were gathered by a state of the art TR camera. Reconstructions were obtained on a GPU-installed computer in less than 2 h. To our knowledge, it is the first time Monte Carlo methods have been successfully used for DOT based on TR cameras. This opens the door to applications such as accurate measurements of oxygenation in neck tumors where the presence of air regions is a problem for conventional approaches.

Keywords

Diffuse optical imaging Monte Carlo methods Graphics processing unit Air segments Time-resolved measurement 

Notes

Acknowledgments

This work was supported by the SwissTransMed project ONIRIUS, Swiss Cancer Research project KFS-3732-08-2015, KFSP Tumor Oxygenation and KFSP Molecular Imaging Network Zurich of the University of Zurich, and by the National Competence Center for Biomedical Imaging.

References

  1. 1.
    Zhu C, Liu Q (2013) Review of Monte Carlo modeling of light transport in tissues. J Biomed Opt 18(5):050902CrossRefGoogle Scholar
  2. 2.
    Andreas HH, Raymond EA, Randall LB (1998) Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues. Phys Med Biol 43(5):1285CrossRefGoogle Scholar
  3. 3.
    Fang Q, Boas DA (2009) Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt Express 17(22):20178–20190CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Alerstam E, Andersson-Engels S, Svensson T (2008) White Monte Carlo for time-resolved photon migration. J Biomed Opt 13(4):041304. -041304-10CrossRefPubMedGoogle Scholar
  5. 5.
    Liu Q, Ramanujam N (2007) Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. J Opt Soc Am A 24(4):1011–1025CrossRefGoogle Scholar
  6. 6.
    Niclass C et al (2008) A 128×128 single-photon image sensor with column-level 10-bit time-to-digital converter array. IEEE J Solid State Circuits 43(12):2977–2989CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jingjing Jiang
    • 1
  • Linda Ahnen
    • 1
  • Alexander Kalyanov
    • 1
  • Scott Lindner
    • 1
  • Martin Wolf
    • 1
  • Salvador Sanchez Majos
    • 1
    Email author
  1. 1.Biomedical Optics Research Laboratory (BORL), Department of NeonatologyUniversity Hospital Zurich (USZ)ZurichSwitzerland

Personalised recommendations